Cargando…

Development, validation and outcomes associated with a risk prediction algorithm for incident atrial fibrillation: retrospective national cohort study of 2 081 139 individuals

FUNDING ACKNOWLEDGEMENTS: Type of funding sources: Foundation. Main funding source(s): British Heart Foundation BACKGROUND: An algorithm that identifies individuals with a digital electronic health record (EHR) signature homologous to patients with atrial fibrillation (AF) could delineate a subpopul...

Descripción completa

Detalles Bibliográficos
Autores principales: Nadarajah, R, Wu, J, Hogg, D, Raveendra, K, Nakao, Y, Nakao, K, Arbel, R, Haim, M, Zahger, D, Parry, J, Bates, C, Cowan, J C, Gale, C P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207060/
http://dx.doi.org/10.1093/europace/euad122.543
_version_ 1785046365935501312
author Nadarajah, R
Wu, J
Hogg, D
Raveendra, K
Nakao, Y
Nakao, K
Arbel, R
Haim, M
Zahger, D
Parry, J
Bates, C
Cowan, J C
Gale, C P
author_facet Nadarajah, R
Wu, J
Hogg, D
Raveendra, K
Nakao, Y
Nakao, K
Arbel, R
Haim, M
Zahger, D
Parry, J
Bates, C
Cowan, J C
Gale, C P
author_sort Nadarajah, R
collection PubMed
description FUNDING ACKNOWLEDGEMENTS: Type of funding sources: Foundation. Main funding source(s): British Heart Foundation BACKGROUND: An algorithm that identifies individuals with a digital electronic health record (EHR) signature homologous to patients with atrial fibrillation (AF) could delineate a subpopulation that may benefit from early interventions to reduce future adverse events. PURPOSE: We aimed to train and test a scalable algorithm to identify individuals at higher risk of incident AF in the short-term, and quantify associations with AF and a range of other conditions. METHODS: We used UK primary care EHR data from individuals aged ≥30 years without known AF in the CPRD-GOLD dataset (Jan 2, 1998, Nov 30, 2018), randomly divided into training (80%) and testing (20%) datasets. We trained a random forest classifier using age, sex, ethnicity and comorbidities (FIND-AF). Performance was evaluated in the testing dataset with internal bootstrap validation with 200 samples, and compared against the CHA2DS2-VASc and C2HEST scores. We calculated the cumulative incidence rate for AF, heart failure, valvular heart disease (and specifically aortic stenosis), MI, stroke or TIA, peripheral vascular disease, CKD, diabetes and COPD. Incident diagnoses were the first record of that condition in primary or secondary care records from any diagnostic position. We excluded individuals for the analysis of each condition who had a preceding diagnosis of that condition. Fine and Gray’s models with competing risk of death were fit for each condition between higher and lower predicted AF risk. RESULTS: FIND-AF could be applied to 100% of records for 2 081 139 individuals in the cohort. In the testing dataset (n = 416 228), individuals at higher predicted AF risk had similar baseline characteristics to individuals who developed incident AF (Table 1). Prediction performance for AF was strongest for FIND-AF (AUROC 0·824, 95% CI 0·813-0·829; Brier score 0.069) compared with CHA2DS2-VASc (0·784, 0·773-0·794; 0.093) and C2HEST (0·757, 0·744-0·770; 0.102). FIND-AF demonstrated favourable reclassification and superior net benefit on decision curve analysis, with robust performance in both sexes and across ethnic groups. The higher predicted risk cohort, compared to lower predicted risk, had a 20-fold higher 6-month incidence rate for AF and higher long-term risk of AF (HR 8·75, 95% CI 8·44-9·06), but also incident heart failure (HR 12.54, 95% CI 12.08-13.01) aortic stenosis (9.98, 9.16-10.87), stroke/TIA (8.07, 7.80-8.34), CKD (6.85, 6.70-7.00), peripheral vascular disease (6.62, 6.28-6.98), valvular heart disease (6.49, 6.14-6.85), MI (5.02, 4.82-5.22), diabetes (2.05, 2.00-2.10) and COPD (2.02, 2.00-2.05) (Figure 1). This cohort were also at higher risk of death (10.45, 10.23-10.68), accounting for 71% of cardiovascular deaths. CONCLUSIONS: FIND-AF is applicable to national electronic health records data, identifies people at higher risk of incident AF within the next 6 months with good performance, and predicts risk of a range of other conditions and death. [Figure: see text] [Figure: see text]
format Online
Article
Text
id pubmed-10207060
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102070602023-05-25 Development, validation and outcomes associated with a risk prediction algorithm for incident atrial fibrillation: retrospective national cohort study of 2 081 139 individuals Nadarajah, R Wu, J Hogg, D Raveendra, K Nakao, Y Nakao, K Arbel, R Haim, M Zahger, D Parry, J Bates, C Cowan, J C Gale, C P Europace 38.6 - Hospital Information Systems, Electronic Medical Records, Clinical Decision Support FUNDING ACKNOWLEDGEMENTS: Type of funding sources: Foundation. Main funding source(s): British Heart Foundation BACKGROUND: An algorithm that identifies individuals with a digital electronic health record (EHR) signature homologous to patients with atrial fibrillation (AF) could delineate a subpopulation that may benefit from early interventions to reduce future adverse events. PURPOSE: We aimed to train and test a scalable algorithm to identify individuals at higher risk of incident AF in the short-term, and quantify associations with AF and a range of other conditions. METHODS: We used UK primary care EHR data from individuals aged ≥30 years without known AF in the CPRD-GOLD dataset (Jan 2, 1998, Nov 30, 2018), randomly divided into training (80%) and testing (20%) datasets. We trained a random forest classifier using age, sex, ethnicity and comorbidities (FIND-AF). Performance was evaluated in the testing dataset with internal bootstrap validation with 200 samples, and compared against the CHA2DS2-VASc and C2HEST scores. We calculated the cumulative incidence rate for AF, heart failure, valvular heart disease (and specifically aortic stenosis), MI, stroke or TIA, peripheral vascular disease, CKD, diabetes and COPD. Incident diagnoses were the first record of that condition in primary or secondary care records from any diagnostic position. We excluded individuals for the analysis of each condition who had a preceding diagnosis of that condition. Fine and Gray’s models with competing risk of death were fit for each condition between higher and lower predicted AF risk. RESULTS: FIND-AF could be applied to 100% of records for 2 081 139 individuals in the cohort. In the testing dataset (n = 416 228), individuals at higher predicted AF risk had similar baseline characteristics to individuals who developed incident AF (Table 1). Prediction performance for AF was strongest for FIND-AF (AUROC 0·824, 95% CI 0·813-0·829; Brier score 0.069) compared with CHA2DS2-VASc (0·784, 0·773-0·794; 0.093) and C2HEST (0·757, 0·744-0·770; 0.102). FIND-AF demonstrated favourable reclassification and superior net benefit on decision curve analysis, with robust performance in both sexes and across ethnic groups. The higher predicted risk cohort, compared to lower predicted risk, had a 20-fold higher 6-month incidence rate for AF and higher long-term risk of AF (HR 8·75, 95% CI 8·44-9·06), but also incident heart failure (HR 12.54, 95% CI 12.08-13.01) aortic stenosis (9.98, 9.16-10.87), stroke/TIA (8.07, 7.80-8.34), CKD (6.85, 6.70-7.00), peripheral vascular disease (6.62, 6.28-6.98), valvular heart disease (6.49, 6.14-6.85), MI (5.02, 4.82-5.22), diabetes (2.05, 2.00-2.10) and COPD (2.02, 2.00-2.05) (Figure 1). This cohort were also at higher risk of death (10.45, 10.23-10.68), accounting for 71% of cardiovascular deaths. CONCLUSIONS: FIND-AF is applicable to national electronic health records data, identifies people at higher risk of incident AF within the next 6 months with good performance, and predicts risk of a range of other conditions and death. [Figure: see text] [Figure: see text] Oxford University Press 2023-05-24 /pmc/articles/PMC10207060/ http://dx.doi.org/10.1093/europace/euad122.543 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle 38.6 - Hospital Information Systems, Electronic Medical Records, Clinical Decision Support
Nadarajah, R
Wu, J
Hogg, D
Raveendra, K
Nakao, Y
Nakao, K
Arbel, R
Haim, M
Zahger, D
Parry, J
Bates, C
Cowan, J C
Gale, C P
Development, validation and outcomes associated with a risk prediction algorithm for incident atrial fibrillation: retrospective national cohort study of 2 081 139 individuals
title Development, validation and outcomes associated with a risk prediction algorithm for incident atrial fibrillation: retrospective national cohort study of 2 081 139 individuals
title_full Development, validation and outcomes associated with a risk prediction algorithm for incident atrial fibrillation: retrospective national cohort study of 2 081 139 individuals
title_fullStr Development, validation and outcomes associated with a risk prediction algorithm for incident atrial fibrillation: retrospective national cohort study of 2 081 139 individuals
title_full_unstemmed Development, validation and outcomes associated with a risk prediction algorithm for incident atrial fibrillation: retrospective national cohort study of 2 081 139 individuals
title_short Development, validation and outcomes associated with a risk prediction algorithm for incident atrial fibrillation: retrospective national cohort study of 2 081 139 individuals
title_sort development, validation and outcomes associated with a risk prediction algorithm for incident atrial fibrillation: retrospective national cohort study of 2 081 139 individuals
topic 38.6 - Hospital Information Systems, Electronic Medical Records, Clinical Decision Support
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207060/
http://dx.doi.org/10.1093/europace/euad122.543
work_keys_str_mv AT nadarajahr developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT wuj developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT hoggd developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT raveendrak developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT nakaoy developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT nakaok developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT arbelr developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT haimm developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT zahgerd developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT parryj developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT batesc developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT cowanjc developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals
AT galecp developmentvalidationandoutcomesassociatedwithariskpredictionalgorithmforincidentatrialfibrillationretrospectivenationalcohortstudyof2081139individuals