Cargando…
Machine Learning-Based Modeling of Olfactory Receptors in Their Inactive State: Human OR51E2 as a Case Study
[Image: see text] Atomistic-level investigation of olfactory receptors (ORs) is a challenging task due to the experimental/computational difficulties in the structural determination/prediction for members of this family of G-protein coupled receptors. Here, we have developed a protocol that performs...
Autores principales: | Alfonso-Prieto, Mercedes, Capelli, Riccardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207261/ https://www.ncbi.nlm.nih.gov/pubmed/37145455 http://dx.doi.org/10.1021/acs.jcim.3c00380 |
Ejemplares similares
-
Bitter Taste and Olfactory Receptors: Beyond Chemical Sensing in the Tongue and the Nose
por: Alfonso-Prieto, Mercedes
Publicado: (2021) -
Olfactory Receptor OR51E1 Mediates GLP-1 Secretion in Human and Rodent Enteroendocrine L Cells
por: Han, Ye Eon, et al.
Publicado: (2018) -
Machine Learning in Human Olfactory Research
por: Lötsch, Jörn, et al.
Publicado: (2019) -
Ectopically expressed olfactory receptors OR51E1 and OR51E2 suppress proliferation and promote cell death in a prostate cancer cell line
por: Pronin, Alexey, et al.
Publicado: (2021) -
Structure of human GABA(B) receptor in an inactive
state
por: Park, Jinseo, et al.
Publicado: (2020)