Cargando…
Fragment Linker Prediction Using the Deep Encoder-Decoder Network for PROTACs Drug Design
[Image: see text] A drug discovery and development pipeline is a prolonged and complex process that remains challenging for both computational methods and medicinal chemists and has not been able to be resolved using computational methods. Deep learning has been utilized in various fields and achiev...
Autores principales: | Kao, Chien-Ting, Lin, Chieh-Te, Chou, Cheng-Li, Lin, Chu-Chung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207268/ https://www.ncbi.nlm.nih.gov/pubmed/37150933 http://dx.doi.org/10.1021/acs.jcim.2c01287 |
Ejemplares similares
-
Novel approaches for the rational design of PROTAC linkers
por: Zagidullin, Almaz, et al.
Publicado: (2020) -
Current strategies for the design of PROTAC linkers: a critical review
por: Troup, Robert I., et al.
Publicado: (2020) -
Linker-Dependent
Folding Rationalizes PROTAC Cell
Permeability
por: Poongavanam, Vasanthanathan, et al.
Publicado: (2022) -
PROTACs bearing piperazine-containing linkers: what effect on their protonation state?
por: Desantis, Jenny, et al.
Publicado: (2022) -
Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design
por: Shi, Wentao, et al.
Publicado: (2022)