Cargando…
Artificial intelligence-estimated biological heart age using 12 lead electrocardiogram predicts mortality and cardiovascular outcomes
FUNDING ACKNOWLEDGEMENTS: Type of funding sources: None. Main funding source(s): none BACKGROUND: There is a paucity of data on the artificial intelligence-estimated biological ECG heart age (AI ECG-heart age) for predicting cardiovascular outcomes as distinct from the chronological age (CA). PURPOS...
Autores principales: | Baek, Y, Lee, D H, Jo, Y S, Lee, S C, Choi, W I, Kim, D H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207539/ http://dx.doi.org/10.1093/europace/euad122.614 |
Ejemplares similares
-
Single-lead ECGs with wearable technology: diagnostic accuracy in patients with cardiovascular disease
por: Briosa E Gala, A, et al.
Publicado: (2023) -
Electrocardiographic markers of subclinical atrial fibrillation detected by implantable loop recorder
por: Xing, L Y, et al.
Publicado: (2023) -
Automated atrial fibrillation detection with a smartwatch and smart-ring in individuals with cardiovascular disease
por: Briosa E Gala, A, et al.
Publicado: (2023) -
Precordial reverse pattern break on ECG: could it be a discriminator endo/epicardial ablation site of left posteroseptal accessory pathways
por: Turan, O E, et al.
Publicado: (2023) -
Heart rate variability according to electrolyte changes during hemodialysis in patients with chronic kidney disease
por: Im, S I, et al.
Publicado: (2023)