Cargando…
Artificial intelligence predicts all-cause and cardiovascular mortalities using 12-lead electrocardiography in sinus rhythm
FUNDING ACKNOWLEDGEMENTS: Type of funding sources: None. INTRODUCTION: Electrocardiography (ECG) can be easily obtained at a low cost and includes voltage and time interval representing heart conditions. We hypothesized that artificial intelligence (AI) detects a subtle abnormality in 12-lead ECG an...
Autores principales: | Park, J W, Kwon, O S, Kim, D H, Yu, H T, Kim, T H, Uhm, J S, Joung, B Y, Lee, M H, Hwang, C, Pak, H N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207619/ http://dx.doi.org/10.1093/europace/euad122.291 |
Ejemplares similares
-
Left ventricular shape remodelling predicts major arrhythmic events in stable coronary artery disease
por: Zaidi, H, et al.
Publicado: (2023) -
3D substrate complexity analysis using cardiac MRI predicts ICD therapy in post-infarct ventricular tachycardia
por: Bhagirath, P, et al.
Publicado: (2023) -
Advanced 3D analysis of fibrotic ring-like pattern in non-ischemic cardiomyopathy predicts major arrhythmic events
por: Zaidi, H, et al.
Publicado: (2023) -
Fibrosis entropy is associated with life-threatening arrhythmia in non-ischaemic cardiomyopathy
por: Zaidi, H, et al.
Publicado: (2023) -
Noninvasive stratification of ventricular substrate by electrocardiographic imaging
por: Reventos-Presmanes, J, et al.
Publicado: (2023)