Cargando…
Risk prediction of heart failure in patients with ischemic heart disease using network analytics and stacking ensemble learning
BACKGROUND: Heart failure (HF) is a major complication following ischemic heart disease (IHD) and it adversely affects the outcome. Early prediction of HF risk in patients with IHD is beneficial for timely intervention and for reducing disease burden. METHODS: Two cohorts, cases for patients first d...
Autores principales: | Zhou, Dejia, Qiu, Hang, Wang, Liya, Shen, Minghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207812/ https://www.ncbi.nlm.nih.gov/pubmed/37221512 http://dx.doi.org/10.1186/s12911-023-02196-2 |
Ejemplares similares
-
Phenotypic Disease Network Analysis to Identify Comorbidity Patterns in Hospitalized Patients with Ischemic Heart Disease Using Large-Scale Administrative Data
por: Zhou, Dejia, et al.
Publicado: (2022) -
Applying an Improved Stacking Ensemble Model to Predict the Mortality of ICU Patients with Heart Failure
por: Chiu, Chih-Chou, et al.
Publicado: (2022) -
Network analytics and machine learning for predicting length of stay in elderly patients with chronic diseases at point of admission
por: Hu, Zhixu, et al.
Publicado: (2022) -
Explainable prediction of daily hospitalizations for cerebrovascular disease using stacked ensemble learning
por: Lu, Xiaoya, et al.
Publicado: (2023) -
Stacking ensemble learning model to predict 6-month mortality in ischemic stroke patients
por: Hwangbo, Lee, et al.
Publicado: (2022)