Cargando…
Technical advancement and practical considerations of LC-MS/MS-based methods for host cell protein identification and quantitation to support process development
Host cell proteins (HCPs) are process-related impurities derived from the manufacturing of recombinant biotherapeutics. Residual HCP in drug products, ranging from 1 to 100 ppm (ng HCP/mg product) or even below sub-ppm level, may affect product quality, stability, efficacy, or safety. Therefore, rem...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208169/ https://www.ncbi.nlm.nih.gov/pubmed/37218066 http://dx.doi.org/10.1080/19420862.2023.2213365 |
Sumario: | Host cell proteins (HCPs) are process-related impurities derived from the manufacturing of recombinant biotherapeutics. Residual HCP in drug products, ranging from 1 to 100 ppm (ng HCP/mg product) or even below sub-ppm level, may affect product quality, stability, efficacy, or safety. Therefore, removal of HCPs to appropriate levels is critical for the bioprocess development of biotherapeutics. Liquid chromatography-mass spectrometry (LC-MS) analysis has become an important tool to identify, quantify, and monitor the clearance of individual HCPs. This review covers the technical advancement of sample preparation strategies, new LC-MS-based techniques, and data analysis approaches to robustly and sensitively measure HCPs while overcoming the high dynamic range analytical challenges. We also discuss our strategy for LC-MS-based HCP workflows to enable fast support of process development throughout the product life cycle, and provide insights into developing specific analytical strategies leveraging LC-MS tools to control HCPs in process and mitigate their potential risks to drug quality, stability, and patient safety. |
---|