Cargando…
Utilization of interpretable machine learning model to forecast the risk of major adverse kidney events in elderly patients in critical care
Major adverse kidney events within 30 d (MAKE30) implicates poor outcomes for elderly patients in the intensive care unit (ICU). This study aimed to predict the occurrence of MAKE30 in elderly ICU patients using machine learning. The study cohort comprised 2366 elderly ICU patients admitted to the S...
Autores principales: | Wang, Lin, Duan, Shao-Bin, Yan, Ping, Luo, Xiao-Qin, Zhang, Ning-Ya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208177/ https://www.ncbi.nlm.nih.gov/pubmed/37218683 http://dx.doi.org/10.1080/0886022X.2023.2215329 |
Ejemplares similares
-
Undetectable haptoglobin is associated with major adverse kidney events in critically ill burn patients
por: Dépret, François, et al.
Publicado: (2017) -
Critical values of monitoring indexes for perioperative major adverse cardiac events in elderly patients with biliary diseases
por: Zhang, Zong-Ming, et al.
Publicado: (2022) -
Serum renin and major adverse kidney events in critically ill patients: a multicenter prospective study
por: Flannery, Alexander H., et al.
Publicado: (2021) -
Urine Klotho Is Lower in Critically Ill Patients With Versus Without Acute Kidney Injury and Associates With Major Adverse Kidney Events
por: Neyra, Javier A., et al.
Publicado: (2019) -
From data to interpretable models: machine learning for soil moisture forecasting
por: Basak, Aniruddha, et al.
Publicado: (2022)