Cargando…
TMBserval: a statistical explainable learning model reveals weighted tumor mutation burden better categorizing therapeutic benefits
A high tumor mutation burden (TMB) is known to drive the response to immune checkpoint inhibitors (ICI) and is associated with favorable prognoses. However, because it is a one-dimensional numerical representation of non-synonymous genetic alterations, TMB suffers from clinical challenges due to its...
Autores principales: | Wang, Yixuan, Wang, Jiayin, Fang, Wenfeng, Xiao, Xiao, Wang, Quan, Zhao, Jian, Liu, Jingjing, Yang, Shuanying, Liu, Yuqian, Lai, Xin, Song, Xiaofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208409/ https://www.ncbi.nlm.nih.gov/pubmed/37234148 http://dx.doi.org/10.3389/fimmu.2023.1151755 |
Ejemplares similares
-
A Joint Model Considering Measurement Errors for Optimally Identifying Tumor Mutation Burden Threshold
por: Wang, Yixuan, et al.
Publicado: (2022) -
TMBcat: A multi-endpoint p-value criterion on different discrepancy metrics for superiorly inferring tumor mutation burden thresholds
por: Wang, Yixuan, et al.
Publicado: (2022) -
Vocalization categorization behavior explained by a feature-based auditory categorization model
por: Kar, Manaswini, et al.
Publicado: (2022) -
The Statistical analysis of categorical data
por: Andersen, B. Erling
Publicado: (1991) -
The statistical analysis of categorical data
por: Andersen, Erling B
Publicado: (1994)