Cargando…

Loss of toll-like receptor 5 potentiates spontaneous hepatocarcinogenesis in farnesoid X receptor–deficient mice

HCC is the most common primary liver cancer and a leading cause of cancer-related mortality. Gut microbiota is a large collection of microbes, predominately bacteria, that harbor the gastrointestinal tract. Changes in gut microbiota that deviate from the native composition, that is, “dysbiosis,” is...

Descripción completa

Detalles Bibliográficos
Autores principales: Golonka, Rachel M., Yeoh, Beng San, Saha, Piu, Gohara, Amira, Tummala, Ramakumar, Stepkowski, Stanislaw, Tiwari, Amit K., Joe, Bina, Gonzalez, Frank J., Gewirtz, Andrew T., Vijay-Kumar, Matam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208708/
https://www.ncbi.nlm.nih.gov/pubmed/37219858
http://dx.doi.org/10.1097/HC9.0000000000000166
Descripción
Sumario:HCC is the most common primary liver cancer and a leading cause of cancer-related mortality. Gut microbiota is a large collection of microbes, predominately bacteria, that harbor the gastrointestinal tract. Changes in gut microbiota that deviate from the native composition, that is, “dysbiosis,” is proposed as a probable diagnostic biomarker and a risk factor for HCC. However, whether gut microbiota dysbiosis is a cause or a consequence of HCC is unknown. METHODS: To better understand the role of gut microbiota in HCC, mice deficient of toll-like receptor 5 (TLR5, a receptor for bacterial flagellin) as a model of spontaneous gut microbiota dysbiosis were crossed with farnesoid X receptor knockout mice (FxrKO), a genetic model for spontaneous HCC. Male FxrKO/Tlr5KO double knockout (DKO), FxrKO, Tlr5KO, and wild-type (WT) mice were aged to the 16-month HCC time point. RESULTS: Compared with FxrKO mice, DKO mice had more severe hepatooncogenesis at the gross, histological, and transcript levels and this was associated with pronounced cholestatic liver injury. The bile acid dysmetabolism in FxrKO mice became more aberrant in the absence of TLR5 due in part to suppression of bile acid secretion and enhanced cholestasis. Out of the 14 enriched taxon signatures seen in the DKO gut microbiota, 50% were dominated by the Proteobacteria phylum with expansion of the gut pathobiont γ-Proteobacteria that is implicated in HCC. CONCLUSIONS: Collectively, introducing gut microbiota dysbiosis by TLR5 deletion exacerbated hepatocarcinogenesis in the FxrKO mouse model.