Cargando…
Green-synthesized nanoparticles of the polyherbal extract attenuate the necrosis of pancreatic β-cell in a streptozotocin-induced diabetic model
Plant-based nanoformulation is one of the novel approaches for therapeutic benefits. This research synthesized a silver nanoparticle from the polyherbal combination of four plants/seeds (Momordica charantia, Trigonella foenum-graecum, Nigella sativa, and Ocimum sanctum) and investigated its antidiab...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208926/ https://www.ncbi.nlm.nih.gov/pubmed/37251822 http://dx.doi.org/10.1016/j.heliyon.2023.e16137 |
_version_ | 1785046772782989312 |
---|---|
author | Hasan Chowdhury, Muhammad Abid Al Araby, Salahuddin Quader Alelwani, Walla Kattan, Shahad W. Mansouri, Omniah A. Uddin Rahat, Mohammad Rasib Khan, Mala Tangpong, Jitbanjong Rahman, Md. Atiar |
author_facet | Hasan Chowdhury, Muhammad Abid Al Araby, Salahuddin Quader Alelwani, Walla Kattan, Shahad W. Mansouri, Omniah A. Uddin Rahat, Mohammad Rasib Khan, Mala Tangpong, Jitbanjong Rahman, Md. Atiar |
author_sort | Hasan Chowdhury, Muhammad Abid |
collection | PubMed |
description | Plant-based nanoformulation is one of the novel approaches for therapeutic benefits. This research synthesized a silver nanoparticle from the polyherbal combination of four plants/seeds (Momordica charantia, Trigonella foenum-graecum, Nigella sativa, and Ocimum sanctum) and investigated its antidiabetic effects in streptozotocin-induced Wistar albino rat model. The polyherbal extract (PH) was extracted by the Soxhlet-solvent extraction method and the resulting crude extract was undergone for silver nanoparticle synthesis. The PH extract was subjected to a four-week intervention in fructose-fed streptozotocin-induced Wistar Albino rats’ models and in vitro antioxidative tests. Experimental animals (age: 6–7 weeks, male, body weight: 200–220 g), were divided into five groups including normal control (NC), reference control (RC), diabetic control (DC), and treatment groups PH200, PH100, and PHAgNP20. After three weeks of intervention, body weight, weekly blood glucose level, oral glucose tolerance test, AST, ALT, alkaline phosphatase, total cholesterol, triglycerides, uric acid, urea, and creatinine level of PH200 were found to be significantly (P < 0.05) improved compared to the diabetic control. The same dose demonstrated better regeneration of damaged pancreatic and kidney tissues. In vitro antioxidant assay manifested promising IC50 values of 86.17 μg/mL for DPPH, 711.04 μg/mL for superoxide free radical, and 0.48 mg/mL for Iron chelating activity of the polyherbal extract. GC-MS analysis impacted the major volatile compounds of the PH. The data demonstrate that the PH and its nanoparticles could be a novel source of antidiabetic therapeutics through an advanced dose-response study in the type 2 diabetic model. |
format | Online Article Text |
id | pubmed-10208926 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102089262023-05-26 Green-synthesized nanoparticles of the polyherbal extract attenuate the necrosis of pancreatic β-cell in a streptozotocin-induced diabetic model Hasan Chowdhury, Muhammad Abid Al Araby, Salahuddin Quader Alelwani, Walla Kattan, Shahad W. Mansouri, Omniah A. Uddin Rahat, Mohammad Rasib Khan, Mala Tangpong, Jitbanjong Rahman, Md. Atiar Heliyon Research Article Plant-based nanoformulation is one of the novel approaches for therapeutic benefits. This research synthesized a silver nanoparticle from the polyherbal combination of four plants/seeds (Momordica charantia, Trigonella foenum-graecum, Nigella sativa, and Ocimum sanctum) and investigated its antidiabetic effects in streptozotocin-induced Wistar albino rat model. The polyherbal extract (PH) was extracted by the Soxhlet-solvent extraction method and the resulting crude extract was undergone for silver nanoparticle synthesis. The PH extract was subjected to a four-week intervention in fructose-fed streptozotocin-induced Wistar Albino rats’ models and in vitro antioxidative tests. Experimental animals (age: 6–7 weeks, male, body weight: 200–220 g), were divided into five groups including normal control (NC), reference control (RC), diabetic control (DC), and treatment groups PH200, PH100, and PHAgNP20. After three weeks of intervention, body weight, weekly blood glucose level, oral glucose tolerance test, AST, ALT, alkaline phosphatase, total cholesterol, triglycerides, uric acid, urea, and creatinine level of PH200 were found to be significantly (P < 0.05) improved compared to the diabetic control. The same dose demonstrated better regeneration of damaged pancreatic and kidney tissues. In vitro antioxidant assay manifested promising IC50 values of 86.17 μg/mL for DPPH, 711.04 μg/mL for superoxide free radical, and 0.48 mg/mL for Iron chelating activity of the polyherbal extract. GC-MS analysis impacted the major volatile compounds of the PH. The data demonstrate that the PH and its nanoparticles could be a novel source of antidiabetic therapeutics through an advanced dose-response study in the type 2 diabetic model. Elsevier 2023-05-15 /pmc/articles/PMC10208926/ /pubmed/37251822 http://dx.doi.org/10.1016/j.heliyon.2023.e16137 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Hasan Chowdhury, Muhammad Abid Al Araby, Salahuddin Quader Alelwani, Walla Kattan, Shahad W. Mansouri, Omniah A. Uddin Rahat, Mohammad Rasib Khan, Mala Tangpong, Jitbanjong Rahman, Md. Atiar Green-synthesized nanoparticles of the polyherbal extract attenuate the necrosis of pancreatic β-cell in a streptozotocin-induced diabetic model |
title | Green-synthesized nanoparticles of the polyherbal extract attenuate the necrosis of pancreatic β-cell in a streptozotocin-induced diabetic model |
title_full | Green-synthesized nanoparticles of the polyherbal extract attenuate the necrosis of pancreatic β-cell in a streptozotocin-induced diabetic model |
title_fullStr | Green-synthesized nanoparticles of the polyherbal extract attenuate the necrosis of pancreatic β-cell in a streptozotocin-induced diabetic model |
title_full_unstemmed | Green-synthesized nanoparticles of the polyherbal extract attenuate the necrosis of pancreatic β-cell in a streptozotocin-induced diabetic model |
title_short | Green-synthesized nanoparticles of the polyherbal extract attenuate the necrosis of pancreatic β-cell in a streptozotocin-induced diabetic model |
title_sort | green-synthesized nanoparticles of the polyherbal extract attenuate the necrosis of pancreatic β-cell in a streptozotocin-induced diabetic model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208926/ https://www.ncbi.nlm.nih.gov/pubmed/37251822 http://dx.doi.org/10.1016/j.heliyon.2023.e16137 |
work_keys_str_mv | AT hasanchowdhurymuhammadabid greensynthesizednanoparticlesofthepolyherbalextractattenuatethenecrosisofpancreaticbcellinastreptozotocininduceddiabeticmodel AT alarabysalahuddinquader greensynthesizednanoparticlesofthepolyherbalextractattenuatethenecrosisofpancreaticbcellinastreptozotocininduceddiabeticmodel AT alelwaniwalla greensynthesizednanoparticlesofthepolyherbalextractattenuatethenecrosisofpancreaticbcellinastreptozotocininduceddiabeticmodel AT kattanshahadw greensynthesizednanoparticlesofthepolyherbalextractattenuatethenecrosisofpancreaticbcellinastreptozotocininduceddiabeticmodel AT mansouriomniaha greensynthesizednanoparticlesofthepolyherbalextractattenuatethenecrosisofpancreaticbcellinastreptozotocininduceddiabeticmodel AT uddinrahatmohammadrasib greensynthesizednanoparticlesofthepolyherbalextractattenuatethenecrosisofpancreaticbcellinastreptozotocininduceddiabeticmodel AT khanmala greensynthesizednanoparticlesofthepolyherbalextractattenuatethenecrosisofpancreaticbcellinastreptozotocininduceddiabeticmodel AT tangpongjitbanjong greensynthesizednanoparticlesofthepolyherbalextractattenuatethenecrosisofpancreaticbcellinastreptozotocininduceddiabeticmodel AT rahmanmdatiar greensynthesizednanoparticlesofthepolyherbalextractattenuatethenecrosisofpancreaticbcellinastreptozotocininduceddiabeticmodel |