Cargando…
GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown(1) to be highly efficient for discovery of genetic associations(2). Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critic...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208981/ https://www.ncbi.nlm.nih.gov/pubmed/37198478 http://dx.doi.org/10.1038/s41586-023-06034-3 |
_version_ | 1785046785548353536 |
---|---|
author | Pairo-Castineira, Erola Rawlik, Konrad Bretherick, Andrew D. Qi, Ting Wu, Yang Nassiri, Isar McConkey, Glenn A. Zechner, Marie Klaric, Lucija Griffiths, Fiona Oosthuyzen, Wilna Kousathanas, Athanasios Richmond, Anne Millar, Jonathan Russell, Clark D. Malinauskas, Tomas Thwaites, Ryan Morrice, Kirstie Keating, Sean Maslove, David Nichol, Alistair Semple, Malcolm G. Knight, Julian Shankar-Hari, Manu Summers, Charlotte Hinds, Charles Horby, Peter Ling, Lowell McAuley, Danny Montgomery, Hugh Openshaw, Peter J. M. Begg, Colin Walsh, Timothy Tenesa, Albert Flores, Carlos Riancho, José A. Rojas-Martinez, Augusto Lapunzina, Pablo Yang, Jian Ponting, Chris P. Wilson, James F. Vitart, Veronique Abedalthagafi, Malak Luchessi, Andre D. Parra, Esteban J. Cruz, Raquel Carracedo, Angel Fawkes, Angie Murphy, Lee Rowan, Kathy Pereira, Alexandre C. Law, Andy Fairfax, Benjamin Hendry, Sara Clohisey Baillie, J. Kenneth |
author_facet | Pairo-Castineira, Erola Rawlik, Konrad Bretherick, Andrew D. Qi, Ting Wu, Yang Nassiri, Isar McConkey, Glenn A. Zechner, Marie Klaric, Lucija Griffiths, Fiona Oosthuyzen, Wilna Kousathanas, Athanasios Richmond, Anne Millar, Jonathan Russell, Clark D. Malinauskas, Tomas Thwaites, Ryan Morrice, Kirstie Keating, Sean Maslove, David Nichol, Alistair Semple, Malcolm G. Knight, Julian Shankar-Hari, Manu Summers, Charlotte Hinds, Charles Horby, Peter Ling, Lowell McAuley, Danny Montgomery, Hugh Openshaw, Peter J. M. Begg, Colin Walsh, Timothy Tenesa, Albert Flores, Carlos Riancho, José A. Rojas-Martinez, Augusto Lapunzina, Pablo Yang, Jian Ponting, Chris P. Wilson, James F. Vitart, Veronique Abedalthagafi, Malak Luchessi, Andre D. Parra, Esteban J. Cruz, Raquel Carracedo, Angel Fawkes, Angie Murphy, Lee Rowan, Kathy Pereira, Alexandre C. Law, Andy Fairfax, Benjamin Hendry, Sara Clohisey Baillie, J. Kenneth |
author_sort | Pairo-Castineira, Erola |
collection | PubMed |
description | Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown(1) to be highly efficient for discovery of genetic associations(2). Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group(3). Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A). |
format | Online Article Text |
id | pubmed-10208981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102089812023-05-26 GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19 Pairo-Castineira, Erola Rawlik, Konrad Bretherick, Andrew D. Qi, Ting Wu, Yang Nassiri, Isar McConkey, Glenn A. Zechner, Marie Klaric, Lucija Griffiths, Fiona Oosthuyzen, Wilna Kousathanas, Athanasios Richmond, Anne Millar, Jonathan Russell, Clark D. Malinauskas, Tomas Thwaites, Ryan Morrice, Kirstie Keating, Sean Maslove, David Nichol, Alistair Semple, Malcolm G. Knight, Julian Shankar-Hari, Manu Summers, Charlotte Hinds, Charles Horby, Peter Ling, Lowell McAuley, Danny Montgomery, Hugh Openshaw, Peter J. M. Begg, Colin Walsh, Timothy Tenesa, Albert Flores, Carlos Riancho, José A. Rojas-Martinez, Augusto Lapunzina, Pablo Yang, Jian Ponting, Chris P. Wilson, James F. Vitart, Veronique Abedalthagafi, Malak Luchessi, Andre D. Parra, Esteban J. Cruz, Raquel Carracedo, Angel Fawkes, Angie Murphy, Lee Rowan, Kathy Pereira, Alexandre C. Law, Andy Fairfax, Benjamin Hendry, Sara Clohisey Baillie, J. Kenneth Nature Article Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown(1) to be highly efficient for discovery of genetic associations(2). Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group(3). Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A). Nature Publishing Group UK 2023-05-17 2023 /pmc/articles/PMC10208981/ /pubmed/37198478 http://dx.doi.org/10.1038/s41586-023-06034-3 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Pairo-Castineira, Erola Rawlik, Konrad Bretherick, Andrew D. Qi, Ting Wu, Yang Nassiri, Isar McConkey, Glenn A. Zechner, Marie Klaric, Lucija Griffiths, Fiona Oosthuyzen, Wilna Kousathanas, Athanasios Richmond, Anne Millar, Jonathan Russell, Clark D. Malinauskas, Tomas Thwaites, Ryan Morrice, Kirstie Keating, Sean Maslove, David Nichol, Alistair Semple, Malcolm G. Knight, Julian Shankar-Hari, Manu Summers, Charlotte Hinds, Charles Horby, Peter Ling, Lowell McAuley, Danny Montgomery, Hugh Openshaw, Peter J. M. Begg, Colin Walsh, Timothy Tenesa, Albert Flores, Carlos Riancho, José A. Rojas-Martinez, Augusto Lapunzina, Pablo Yang, Jian Ponting, Chris P. Wilson, James F. Vitart, Veronique Abedalthagafi, Malak Luchessi, Andre D. Parra, Esteban J. Cruz, Raquel Carracedo, Angel Fawkes, Angie Murphy, Lee Rowan, Kathy Pereira, Alexandre C. Law, Andy Fairfax, Benjamin Hendry, Sara Clohisey Baillie, J. Kenneth GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19 |
title | GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19 |
title_full | GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19 |
title_fullStr | GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19 |
title_full_unstemmed | GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19 |
title_short | GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19 |
title_sort | gwas and meta-analysis identifies 49 genetic variants underlying critical covid-19 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208981/ https://www.ncbi.nlm.nih.gov/pubmed/37198478 http://dx.doi.org/10.1038/s41586-023-06034-3 |
work_keys_str_mv | AT pairocastineiraerola gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT rawlikkonrad gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT bretherickandrewd gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT qiting gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT wuyang gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT nassiriisar gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT mcconkeyglenna gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT zechnermarie gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT klariclucija gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT griffithsfiona gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT oosthuyzenwilna gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT kousathanasathanasios gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT richmondanne gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT millarjonathan gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT russellclarkd gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT malinauskastomas gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT thwaitesryan gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT morricekirstie gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT keatingsean gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT maslovedavid gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT nicholalistair gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT semplemalcolmg gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT knightjulian gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT shankarharimanu gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT summerscharlotte gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT hindscharles gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT horbypeter gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT linglowell gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT mcauleydanny gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT montgomeryhugh gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT openshawpeterjm gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT beggcolin gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT walshtimothy gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT tenesaalbert gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT florescarlos gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT rianchojosea gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT rojasmartinezaugusto gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT lapunzinapablo gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT yangjian gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT pontingchrisp gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT wilsonjamesf gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT vitartveronique gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT abedalthagafimalak gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT luchessiandred gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT parraestebanj gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT cruzraquel gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT carracedoangel gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT fawkesangie gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT murphylee gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT rowankathy gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT pereiraalexandrec gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT lawandy gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT fairfaxbenjamin gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT hendrysaraclohisey gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 AT bailliejkenneth gwasandmetaanalysisidentifies49geneticvariantsunderlyingcriticalcovid19 |