Cargando…
Effect of pearl guinea fowl eggshell ultrastructure and microstructure on keets hatchability
Variability in shell structure is an evolutionary mechanism in birds that enables them to adapt to specific environmental conditions. This variability may also occur within the same species under the influence of individual indicators, such as the age or health status of females. While interspecies...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209024/ https://www.ncbi.nlm.nih.gov/pubmed/37210948 http://dx.doi.org/10.1016/j.psj.2023.102733 |
_version_ | 1785046791429816320 |
---|---|
author | Damaziak, Krzysztof Marzec, Agata Riedel, Julia Wójcik, Wojciech Pstrokoński, Paweł Szudrowicz, Hubert Gozdowski, Dariusz |
author_facet | Damaziak, Krzysztof Marzec, Agata Riedel, Julia Wójcik, Wojciech Pstrokoński, Paweł Szudrowicz, Hubert Gozdowski, Dariusz |
author_sort | Damaziak, Krzysztof |
collection | PubMed |
description | Variability in shell structure is an evolutionary mechanism in birds that enables them to adapt to specific environmental conditions. This variability may also occur within the same species under the influence of individual indicators, such as the age or health status of females. While interspecies variation is quite obvious and easy to interpret, the reasons for intraspecies variation remain unclear. In this study, we examined the ultra- and microstructure of guinea fowl eggshells to identify the association between variations in shell structure and hatchability outcomes. We analyzed the visual differences between shells with low (L), intermediate (I), and high (H) external porosity using scale invariant feature transform analysis with NaturePatternMatch software. We found that the external pore image was closely related to the overall porosity of the shell before incubation. The total pore area, total porosity, and diffusion index (G(H2O)) were highest in group H shells (P < 0.001). Posthatching shells were characterized by an increased diameter and total surface area, decreased pore number (P < 0.001), as well as shortened mammillary layer (P < 0.001) and decreased total consumption of mammillary knobs (P < 0.001). The porosity indices of posthatching H shells had intermediate values between L and I. Although the effect of shell structure parameters on hatching was not confirmed, we assumed that all categories (L, I, and H) of shells were ideal for incubation. This suggests that the shell structure adapts to the metabolic rate of developing embryos; however, differences in shell structure affect the duration of incubation and synchronization of hatching. Both L and H shells showed delayed and prolonged hatching. Therefore, we recommended that guinea fowl eggs with different external porosity parameters should be incubated separately for better hatching synchronization. Differences in G(H2O) between L, I, and H eggs suggest that the shell porosity characteristics of guinea fowl eggs may be a key determinant of the rate of water loss during storage before incubation. |
format | Online Article Text |
id | pubmed-10209024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102090242023-05-26 Effect of pearl guinea fowl eggshell ultrastructure and microstructure on keets hatchability Damaziak, Krzysztof Marzec, Agata Riedel, Julia Wójcik, Wojciech Pstrokoński, Paweł Szudrowicz, Hubert Gozdowski, Dariusz Poult Sci PHYSIOLOGY AND REPRODUCTION Variability in shell structure is an evolutionary mechanism in birds that enables them to adapt to specific environmental conditions. This variability may also occur within the same species under the influence of individual indicators, such as the age or health status of females. While interspecies variation is quite obvious and easy to interpret, the reasons for intraspecies variation remain unclear. In this study, we examined the ultra- and microstructure of guinea fowl eggshells to identify the association between variations in shell structure and hatchability outcomes. We analyzed the visual differences between shells with low (L), intermediate (I), and high (H) external porosity using scale invariant feature transform analysis with NaturePatternMatch software. We found that the external pore image was closely related to the overall porosity of the shell before incubation. The total pore area, total porosity, and diffusion index (G(H2O)) were highest in group H shells (P < 0.001). Posthatching shells were characterized by an increased diameter and total surface area, decreased pore number (P < 0.001), as well as shortened mammillary layer (P < 0.001) and decreased total consumption of mammillary knobs (P < 0.001). The porosity indices of posthatching H shells had intermediate values between L and I. Although the effect of shell structure parameters on hatching was not confirmed, we assumed that all categories (L, I, and H) of shells were ideal for incubation. This suggests that the shell structure adapts to the metabolic rate of developing embryos; however, differences in shell structure affect the duration of incubation and synchronization of hatching. Both L and H shells showed delayed and prolonged hatching. Therefore, we recommended that guinea fowl eggs with different external porosity parameters should be incubated separately for better hatching synchronization. Differences in G(H2O) between L, I, and H eggs suggest that the shell porosity characteristics of guinea fowl eggs may be a key determinant of the rate of water loss during storage before incubation. Elsevier 2023-04-26 /pmc/articles/PMC10209024/ /pubmed/37210948 http://dx.doi.org/10.1016/j.psj.2023.102733 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | PHYSIOLOGY AND REPRODUCTION Damaziak, Krzysztof Marzec, Agata Riedel, Julia Wójcik, Wojciech Pstrokoński, Paweł Szudrowicz, Hubert Gozdowski, Dariusz Effect of pearl guinea fowl eggshell ultrastructure and microstructure on keets hatchability |
title | Effect of pearl guinea fowl eggshell ultrastructure and microstructure on keets hatchability |
title_full | Effect of pearl guinea fowl eggshell ultrastructure and microstructure on keets hatchability |
title_fullStr | Effect of pearl guinea fowl eggshell ultrastructure and microstructure on keets hatchability |
title_full_unstemmed | Effect of pearl guinea fowl eggshell ultrastructure and microstructure on keets hatchability |
title_short | Effect of pearl guinea fowl eggshell ultrastructure and microstructure on keets hatchability |
title_sort | effect of pearl guinea fowl eggshell ultrastructure and microstructure on keets hatchability |
topic | PHYSIOLOGY AND REPRODUCTION |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209024/ https://www.ncbi.nlm.nih.gov/pubmed/37210948 http://dx.doi.org/10.1016/j.psj.2023.102733 |
work_keys_str_mv | AT damaziakkrzysztof effectofpearlguineafowleggshellultrastructureandmicrostructureonkeetshatchability AT marzecagata effectofpearlguineafowleggshellultrastructureandmicrostructureonkeetshatchability AT riedeljulia effectofpearlguineafowleggshellultrastructureandmicrostructureonkeetshatchability AT wojcikwojciech effectofpearlguineafowleggshellultrastructureandmicrostructureonkeetshatchability AT pstrokonskipaweł effectofpearlguineafowleggshellultrastructureandmicrostructureonkeetshatchability AT szudrowiczhubert effectofpearlguineafowleggshellultrastructureandmicrostructureonkeetshatchability AT gozdowskidariusz effectofpearlguineafowleggshellultrastructureandmicrostructureonkeetshatchability |