Cargando…
Active learning applied to automated physical systems increases the rate of discovery
Active machine learning is widely used in computational studies where repeated numerical simulations can be conducted on high performance computers without human intervention. But translation of these active learning methods to physical systems has proven more difficult and the accelerated pace of d...
Autores principales: | Shields, Michael D., Gurley, Kurtis, Catarelli, Ryan, Chauhan, Mohit, Ojeda-Tuz, Mariel, Masters, Forrest J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209069/ https://www.ncbi.nlm.nih.gov/pubmed/37225752 http://dx.doi.org/10.1038/s41598-023-35257-7 |
Ejemplares similares
-
Class imbalance learning with Bayesian optimization applied in drug discovery
por: Guan, Shenmin, et al.
Publicado: (2022) -
Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery
por: Lipinski, Celio F., et al.
Publicado: (2019) -
A population-based analysis of increasing rates of suicide mortality in Japan and South Korea, 1985–2010
por: Jeon, Sun Y., et al.
Publicado: (2016) -
Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells
por: Triantafillou, Sofia, et al.
Publicado: (2017) -
Supervised Machine Learning Applied to Automate Flash and Prolonged Capillary Refill Detection by Pulse Oximetry
por: Hunter, Ryan Brandon, et al.
Publicado: (2020)