Cargando…

Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers

Lattice reconstruction and corresponding strain accumulation plays a key role in defining the electronic structure of two-dimensional moiré superlattices, including those of transition metal dichalcogenides (TMDs). Imaging of TMD moirés has so far provided a qualitative understanding of this relaxat...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Winkle, Madeline, Craig, Isaac M., Carr, Stephen, Dandu, Medha, Bustillo, Karen C., Ciston, Jim, Ophus, Colin, Taniguchi, Takashi, Watanabe, Kenji, Raja, Archana, Griffin, Sinéad M., Bediako, D. Kwabena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209090/
https://www.ncbi.nlm.nih.gov/pubmed/37225701
http://dx.doi.org/10.1038/s41467-023-38504-7
_version_ 1785046802804768768
author Van Winkle, Madeline
Craig, Isaac M.
Carr, Stephen
Dandu, Medha
Bustillo, Karen C.
Ciston, Jim
Ophus, Colin
Taniguchi, Takashi
Watanabe, Kenji
Raja, Archana
Griffin, Sinéad M.
Bediako, D. Kwabena
author_facet Van Winkle, Madeline
Craig, Isaac M.
Carr, Stephen
Dandu, Medha
Bustillo, Karen C.
Ciston, Jim
Ophus, Colin
Taniguchi, Takashi
Watanabe, Kenji
Raja, Archana
Griffin, Sinéad M.
Bediako, D. Kwabena
author_sort Van Winkle, Madeline
collection PubMed
description Lattice reconstruction and corresponding strain accumulation plays a key role in defining the electronic structure of two-dimensional moiré superlattices, including those of transition metal dichalcogenides (TMDs). Imaging of TMD moirés has so far provided a qualitative understanding of this relaxation process in terms of interlayer stacking energy, while models of the underlying deformation mechanisms have relied on simulations. Here, we use interferometric four-dimensional scanning transmission electron microscopy to quantitatively map the mechanical deformations through which reconstruction occurs in small-angle twisted bilayer MoS(2) and WSe(2)/MoS(2) heterobilayers. We provide direct evidence that local rotations govern relaxation for twisted homobilayers, while local dilations are prominent in heterobilayers possessing a sufficiently large lattice mismatch. Encapsulation of the moiré layers in hBN further localizes and enhances these in-plane reconstruction pathways by suppressing out-of-plane corrugation. We also find that extrinsic uniaxial heterostrain, which introduces a lattice constant difference in twisted homobilayers, leads to accumulation and redistribution of reconstruction strain, demonstrating another route to modify the moiré potential.
format Online
Article
Text
id pubmed-10209090
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102090902023-05-26 Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers Van Winkle, Madeline Craig, Isaac M. Carr, Stephen Dandu, Medha Bustillo, Karen C. Ciston, Jim Ophus, Colin Taniguchi, Takashi Watanabe, Kenji Raja, Archana Griffin, Sinéad M. Bediako, D. Kwabena Nat Commun Article Lattice reconstruction and corresponding strain accumulation plays a key role in defining the electronic structure of two-dimensional moiré superlattices, including those of transition metal dichalcogenides (TMDs). Imaging of TMD moirés has so far provided a qualitative understanding of this relaxation process in terms of interlayer stacking energy, while models of the underlying deformation mechanisms have relied on simulations. Here, we use interferometric four-dimensional scanning transmission electron microscopy to quantitatively map the mechanical deformations through which reconstruction occurs in small-angle twisted bilayer MoS(2) and WSe(2)/MoS(2) heterobilayers. We provide direct evidence that local rotations govern relaxation for twisted homobilayers, while local dilations are prominent in heterobilayers possessing a sufficiently large lattice mismatch. Encapsulation of the moiré layers in hBN further localizes and enhances these in-plane reconstruction pathways by suppressing out-of-plane corrugation. We also find that extrinsic uniaxial heterostrain, which introduces a lattice constant difference in twisted homobilayers, leads to accumulation and redistribution of reconstruction strain, demonstrating another route to modify the moiré potential. Nature Publishing Group UK 2023-05-24 /pmc/articles/PMC10209090/ /pubmed/37225701 http://dx.doi.org/10.1038/s41467-023-38504-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Van Winkle, Madeline
Craig, Isaac M.
Carr, Stephen
Dandu, Medha
Bustillo, Karen C.
Ciston, Jim
Ophus, Colin
Taniguchi, Takashi
Watanabe, Kenji
Raja, Archana
Griffin, Sinéad M.
Bediako, D. Kwabena
Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers
title Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers
title_full Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers
title_fullStr Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers
title_full_unstemmed Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers
title_short Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers
title_sort rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209090/
https://www.ncbi.nlm.nih.gov/pubmed/37225701
http://dx.doi.org/10.1038/s41467-023-38504-7
work_keys_str_mv AT vanwinklemadeline rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT craigisaacm rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT carrstephen rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT dandumedha rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT bustillokarenc rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT cistonjim rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT ophuscolin rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT taniguchitakashi rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT watanabekenji rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT rajaarchana rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT griffinsineadm rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers
AT bediakodkwabena rotationalanddilationalreconstructionintransitionmetaldichalcogenidemoirebilayers