Cargando…
Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images
In colorectal cancer (CRC), artificial intelligence (AI) can alleviate the laborious task of characterization and reporting on resected biopsies, including polyps, the numbers of which are increasing as a result of CRC population screening programs ongoing in many countries all around the globe. Her...
Autores principales: | Bokhorst, John-Melle, Nagtegaal, Iris D., Fraggetta, Filippo, Vatrano, Simona, Mesker, Wilma, Vieth, Michael, van der Laak, Jeroen, Ciompi, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209185/ https://www.ncbi.nlm.nih.gov/pubmed/37225743 http://dx.doi.org/10.1038/s41598-023-35491-z |
Ejemplares similares
-
Semi-Supervised Learning to Automate Tumor Bud Detection in Cytokeratin-Stained Whole-Slide Images of Colorectal Cancer
por: Bokhorst, John-Melle, et al.
Publicado: (2023) -
Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations
por: Marini, Niccolò, et al.
Publicado: (2022) -
Deep learning based tumor–stroma ratio scoring in colon cancer correlates with microscopic assessment
por: Smit, Marloes A., et al.
Publicado: (2023) -
Empowering digital pathology applications through explainable knowledge extraction tools
por: Marchesin, Stefano, et al.
Publicado: (2022) -
Correction to: Assessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning
por: Bokhorst, J. M., et al.
Publicado: (2020)