Cargando…
Exploring deep residual network based features for automatic schizophrenia detection from EEG
Schizophrenia is a severe mental illness which can cause lifelong disability. Most recent studies on the Electroencephalogram (EEG)-based diagnosis of schizophrenia rely on bespoke/hand-crafted feature extraction techniques. Traditional manual feature extraction methods are time-consuming, imprecise...
Autores principales: | Siuly, Siuly, Guo, Yanhui, Alcin, Omer Faruk, Li, Yan, Wen, Peng, Wang, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209282/ https://www.ncbi.nlm.nih.gov/pubmed/36947384 http://dx.doi.org/10.1007/s13246-023-01225-8 |
Ejemplares similares
-
SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia
por: Siuly, Siuly, et al.
Publicado: (2022) -
Exploring Sampling in the Detection of Multicategory EEG Signals
por: Siuly, Siuly, et al.
Publicado: (2015) -
A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG
por: Tawhid, Md. Nurul Ahad, et al.
Publicado: (2021) -
Exploring Douglas-Peucker Algorithm in the Detection of Epileptic Seizure from Multicategory EEG Signals
por: Zarei, Roozbeh, et al.
Publicado: (2019) -
Textural feature based intelligent approach for neurological abnormality detection from brain signal data
por: Tawhid, Md. Nurul Ahad, et al.
Publicado: (2022)