Cargando…
A LY6E-PHB1-TRIM21 assembly degrades CD14 protein to mitigate LPS-induced inflammatory response
A major theme of host against invading pathogens lies in multiple regulatory nodes that ensure sufficient signals for protection while avoiding excessive signals toward over-inflammation. The TLR4/MD-2/CD14 complex receptor-mediated response to bacterial lipopolysaccharide (LPS) represents a paradig...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209397/ https://www.ncbi.nlm.nih.gov/pubmed/37250795 http://dx.doi.org/10.1016/j.isci.2023.106808 |
Sumario: | A major theme of host against invading pathogens lies in multiple regulatory nodes that ensure sufficient signals for protection while avoiding excessive signals toward over-inflammation. The TLR4/MD-2/CD14 complex receptor-mediated response to bacterial lipopolysaccharide (LPS) represents a paradigm for understanding the proper control of anti-pathogen innate immunity. In this study, we studied the mechanism by which the glycosylphosphatidylinositol (GPI)-linked LY6E protein constrains LPS response via downregulating CD14. We first showed that LY6E downregulated CD14 via ubiquitin-dependent proteasomal degradation. The subsequent profiling of LY6E protein interactome led to the revelation that the degradation of CD14 by LY6E requires PHB1, which interacts with CD14 in a LY6E-dependent manner. Finally, we identified the PHB1-interacting TRIM21 as the major ubiquitin E3 ligase for the LY6E-mediated ubiquitination of CD14. Together, our study elucidated the molecular basis of LY6E-mediated governance of LPS response, alongside providing new insights to regulatory mechanisms controlling the homeostasis of membrane proteins. |
---|