Cargando…
Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study
Brain functional networks identified from resting functional magnetic resonance imaging (fMRI) data have the potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia (SZ) often yield mixed results across replication studies. This is likely due...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209454/ https://www.ncbi.nlm.nih.gov/pubmed/37209635 http://dx.doi.org/10.1016/j.nicl.2023.103434 |
_version_ | 1785046877989765120 |
---|---|
author | Meng, Xing Iraji, Armin Fu, Zening Kochunov, Peter Belger, Aysenil Ford, Judy M. McEwen, Sara Mathalon, Daniel H. Mueller, Bryon A. Pearlson, Godfrey Potkin, Steven G. Preda, Adrian Turner, Jessica van Erp, Theo G.M. Sui, Jing Calhoun, Vince D. |
author_facet | Meng, Xing Iraji, Armin Fu, Zening Kochunov, Peter Belger, Aysenil Ford, Judy M. McEwen, Sara Mathalon, Daniel H. Mueller, Bryon A. Pearlson, Godfrey Potkin, Steven G. Preda, Adrian Turner, Jessica van Erp, Theo G.M. Sui, Jing Calhoun, Vince D. |
author_sort | Meng, Xing |
collection | PubMed |
description | Brain functional networks identified from resting functional magnetic resonance imaging (fMRI) data have the potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia (SZ) often yield mixed results across replication studies. This is likely due in part to the complexity of the disorder, the short data acquisition time, and the limited ability of the approaches for brain imaging data mining. Therefore, the use of analytic approaches which can both capture individual variability while offering comparability across analyses is highly preferred. Fully blind data-driven approaches such as independent component analysis (ICA) are hard to compare across studies, and approaches that use fixed atlas-based regions can have limited sensitivity to individual sensitivity. By contrast, spatially constrained ICA (scICA) provides a hybrid, fully automated solution that can incorporate spatial network priors while also adapting to new subjects. However, scICA has thus far only been used with a single spatial scale (ICA dimensionality, i.e., ICA model order). In this work, we present an approach using multi-objective optimization scICA with reference algorithm (MOO-ICAR) to extract subject-specific intrinsic connectivity networks (ICNs) from fMRI data at multiple spatial scales, which also enables us to study interactions across spatial scales. We evaluate this approach using a large N (N > 1,600) study of schizophrenia divided into separate validation and replication sets. A multi-scale ICN template was estimated and labeled, then used as input into scICA which was computed on an individual subject level. We then performed a subsequent analysis of multiscale functional network connectivity (msFNC) to evaluate the patient data, including group differences and classification. Results showed highly consistent group differences in msFNC in regions including cerebellum, thalamus, and motor/auditory networks. Importantly, multiple msFNC pairs linking different spatial scales were implicated. The classification model built on the msFNC features obtained up to 85% F1 score, 83% precision, and 88% recall, indicating the strength of the proposed framework in detecting group differences between schizophrenia and the control group. Finally, we evaluated the relationship of the identified patterns to positive symptoms and found consistent results across datasets. The results verified the robustness of our framework in evaluating brain functional connectivity of schizophrenia at multiple spatial scales, implicated consistent and replicable brain networks, and highlighted a promising approach for leveraging resting fMRI data for brain biomarker development. |
format | Online Article Text |
id | pubmed-10209454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102094542023-05-26 Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study Meng, Xing Iraji, Armin Fu, Zening Kochunov, Peter Belger, Aysenil Ford, Judy M. McEwen, Sara Mathalon, Daniel H. Mueller, Bryon A. Pearlson, Godfrey Potkin, Steven G. Preda, Adrian Turner, Jessica van Erp, Theo G.M. Sui, Jing Calhoun, Vince D. Neuroimage Clin Regular Article Brain functional networks identified from resting functional magnetic resonance imaging (fMRI) data have the potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia (SZ) often yield mixed results across replication studies. This is likely due in part to the complexity of the disorder, the short data acquisition time, and the limited ability of the approaches for brain imaging data mining. Therefore, the use of analytic approaches which can both capture individual variability while offering comparability across analyses is highly preferred. Fully blind data-driven approaches such as independent component analysis (ICA) are hard to compare across studies, and approaches that use fixed atlas-based regions can have limited sensitivity to individual sensitivity. By contrast, spatially constrained ICA (scICA) provides a hybrid, fully automated solution that can incorporate spatial network priors while also adapting to new subjects. However, scICA has thus far only been used with a single spatial scale (ICA dimensionality, i.e., ICA model order). In this work, we present an approach using multi-objective optimization scICA with reference algorithm (MOO-ICAR) to extract subject-specific intrinsic connectivity networks (ICNs) from fMRI data at multiple spatial scales, which also enables us to study interactions across spatial scales. We evaluate this approach using a large N (N > 1,600) study of schizophrenia divided into separate validation and replication sets. A multi-scale ICN template was estimated and labeled, then used as input into scICA which was computed on an individual subject level. We then performed a subsequent analysis of multiscale functional network connectivity (msFNC) to evaluate the patient data, including group differences and classification. Results showed highly consistent group differences in msFNC in regions including cerebellum, thalamus, and motor/auditory networks. Importantly, multiple msFNC pairs linking different spatial scales were implicated. The classification model built on the msFNC features obtained up to 85% F1 score, 83% precision, and 88% recall, indicating the strength of the proposed framework in detecting group differences between schizophrenia and the control group. Finally, we evaluated the relationship of the identified patterns to positive symptoms and found consistent results across datasets. The results verified the robustness of our framework in evaluating brain functional connectivity of schizophrenia at multiple spatial scales, implicated consistent and replicable brain networks, and highlighted a promising approach for leveraging resting fMRI data for brain biomarker development. Elsevier 2023-05-17 /pmc/articles/PMC10209454/ /pubmed/37209635 http://dx.doi.org/10.1016/j.nicl.2023.103434 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Regular Article Meng, Xing Iraji, Armin Fu, Zening Kochunov, Peter Belger, Aysenil Ford, Judy M. McEwen, Sara Mathalon, Daniel H. Mueller, Bryon A. Pearlson, Godfrey Potkin, Steven G. Preda, Adrian Turner, Jessica van Erp, Theo G.M. Sui, Jing Calhoun, Vince D. Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study |
title | Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study |
title_full | Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study |
title_fullStr | Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study |
title_full_unstemmed | Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study |
title_short | Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study |
title_sort | multi-model order spatially constrained ica reveals highly replicable group differences and consistent predictive results from resting data: a large n fmri schizophrenia study |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209454/ https://www.ncbi.nlm.nih.gov/pubmed/37209635 http://dx.doi.org/10.1016/j.nicl.2023.103434 |
work_keys_str_mv | AT mengxing multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT irajiarmin multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT fuzening multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT kochunovpeter multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT belgeraysenil multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT fordjudym multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT mcewensara multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT mathalondanielh multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT muellerbryona multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT pearlsongodfrey multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT potkinsteveng multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT predaadrian multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT turnerjessica multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT vanerptheogm multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT suijing multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy AT calhounvinced multimodelorderspatiallyconstrainedicarevealshighlyreplicablegroupdifferencesandconsistentpredictiveresultsfromrestingdataalargenfmrischizophreniastudy |