Cargando…
Metapaths: similarity search in heterogeneous knowledge graphs via meta-paths
SUMMARY: Heterogeneous knowledge graphs (KGs) have enabled the modeling of complex systems, from genetic interaction graphs and protein-protein interaction networks to networks representing drugs, diseases, proteins, and side effects. Analytical methods for KGs rely on quantifying similarities betwe...
Autores principales: | Noori, Ayush, Li, Michelle M, Tan, Amelia L M, Zitnik, Marinka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209523/ https://www.ncbi.nlm.nih.gov/pubmed/37140542 http://dx.doi.org/10.1093/bioinformatics/btad297 |
Ejemplares similares
-
Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction
por: Chen, Yali, et al.
Publicado: (2022) -
Unsupervised Embedding Learning for Large-Scale Heterogeneous Networks Based on Metapath Graph Sampling
por: Zhong, Hongwei, et al.
Publicado: (2023) -
DeepPurpose: a deep learning library for drug–target interaction prediction
por: Huang, Kexin, et al.
Publicado: (2020) -
MetaPath: identifying differentially abundant metabolic pathways in metagenomic datasets
por: Liu, Bo, et al.
Publicado: (2011) -
MetaPath Online: a web server implementation of the network expansion algorithm
por: Handorf, Thomas, et al.
Publicado: (2007)