Cargando…
Machine learning classifier approaches for predicting response to RTK-type-III inhibitors demonstrate high accuracy using transcriptomic signatures and ex vivo data
MOTIVATION: The application of machine learning (ML) techniques in the medical field has demonstrated both successes and challenges in the precision medicine era. The ability to accurately classify a subject as a potential responder versus a nonresponder to a given therapy is still an active area of...
Autores principales: | Ferrato, Mauricio H, Marsh, Adam G, Franke, Karl R, Huang, Benjamin J, Kolb, E Anders, DeRyckere, Deborah, Grahm, Douglas K, Chandrasekaran, Sunita, Crowgey, Erin L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209528/ https://www.ncbi.nlm.nih.gov/pubmed/37250111 http://dx.doi.org/10.1093/bioadv/vbad034 |
Ejemplares similares
-
Assessment of Accuracy in Unmanned Aerial Vehicle (UAV) Pose Estimation with the REAL-Time Kinematic (RTK) Method on the Example of DJI Matrice 300 RTK
por: Czyża, Szymon, et al.
Publicado: (2023) -
Development of Bioinformatics Pipeline for Analyzing Clinical Pediatric NGS Data
por: Crowgey, Erin L., et al.
Publicado: (2015) -
Tumorigenicity of RTK/RAS in urothelium
por: Wu, Xue-Ru, et al.
Publicado: (2015) -
Accelerating prediction of chemical shift of protein structures on GPUs: Using OpenACC
por: Wright, Eric, et al.
Publicado: (2020) -
The Current State of FLT3 Inhibition in Acute Myeloid Leukemia – Pitfalls and Promises
por: Minson, Katherine A, et al.
Publicado: (2017)