Cargando…
Performance of deep learning algorithms to distinguish high-grade glioma from low-grade glioma: A systematic review and meta-analysis
This study aims to evaluate deep learning (DL) performance in differentiating low- and high-grade glioma. Search online database for studies continuously published from 1st January 2015 until 16th August 2022. The random-effects model was used for synthesis, based on pooled sensitivity (SE), specifi...
Autores principales: | Sun, Wanyi, Song, Cheng, Tang, Chao, Pan, Chenghao, Xue, Peng, Fan, Jinhu, Qiao, Youlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209541/ https://www.ncbi.nlm.nih.gov/pubmed/37250800 http://dx.doi.org/10.1016/j.isci.2023.106815 |
Ejemplares similares
-
On high‐risk, low‐grade glioma: What distinguishes high from low?
por: Geurts, Marjolein, et al.
Publicado: (2018) -
Management of Low-Grade Glioma
por: Pouratian, Nader, et al.
Publicado: (2010) -
Pediatric Low-Grade Gliomas
por: Collins, Kelly L., et al.
Publicado: (2020) -
Pseudoprogression in low-grade glioma
por: Slater, Jason M., et al.
Publicado: (2019) -
Chemotherapy and diffuse low-grade gliomas: a survey within the European Low-Grade Glioma Network
por: Darlix, Amélie, et al.
Publicado: (2019)