Cargando…
Effects of luseogliflozin treatment on hyperglycemia-induced muscle atrophy in rats
Diabetes mellitus is recognized as a risk factor for sarcopenia. Luseogliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, reduces inflammation and oxidative stress by improving hyperglycemia, subsequently improving hepatosteatosis or kidney dysfunction. However, the effects of S...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
the Society for Free Radical Research Japan
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209601/ https://www.ncbi.nlm.nih.gov/pubmed/37251965 http://dx.doi.org/10.3164/jcbn.22-58 |
Sumario: | Diabetes mellitus is recognized as a risk factor for sarcopenia. Luseogliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, reduces inflammation and oxidative stress by improving hyperglycemia, subsequently improving hepatosteatosis or kidney dysfunction. However, the effects of SGLT2 inhibitor on the regulation of skeletal muscle mass or function in hyperglycemia are still unknown. In this study, we investigated the effects of luseogliflozin-mediated attenuation of hyperglycemia on the prevention of muscle atrophy. Twenty-four male Sprague–Dawley rats were randomly divided into four groups: control, control with SGLT2 inhibitor treatment, hyperglycemia, and hyperglycemia with SGLT2 inhibitor treatment. The hyperglycemic rodent model was established using a single injection of streptozotocin, a compound with preferential toxicity toward pancreatic beta cells. Muscle atrophy in streptozotocin-induced hyperglycemic model rats was inhibited by the suppression of hyperglycemia using luseogliflozin, which consequently suppressed hyperglycemia-mediated increase in the levels of advanced glycation end products (AGEs) and activated the protein degradation pathway in muscle cells. Treatment with luseogliflozin can restore the hyperglycemia-induced loss in the muscle mass to some degree partly through the inhibition of AGEs-induced or homeostatic disruption of mitochondria-induced activation of muscle degradation. |
---|