Cargando…

Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method

Electron ionization (EI) mass spectrum library searching is usually performed to identify a compound in gas chromatography/mass spectrometry. However, compounds whose EI mass spectra are registered in the library are still limited compared to the popular compound databases. This means that there are...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubo, Ayumi, Kubota, Azusa, Ishioka, Haruki, Hizume, Takuhiro, Ubukata, Masaaki, Nagatomo, Kenji, Satoh, Takaya, Yoshida, Mitsuyoshi, Uematsu, Fuminori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Mass Spectrometry Society of Japan 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209659/
https://www.ncbi.nlm.nih.gov/pubmed/37250593
http://dx.doi.org/10.5702/massspectrometry.A0120
_version_ 1785046923940462592
author Kubo, Ayumi
Kubota, Azusa
Ishioka, Haruki
Hizume, Takuhiro
Ubukata, Masaaki
Nagatomo, Kenji
Satoh, Takaya
Yoshida, Mitsuyoshi
Uematsu, Fuminori
author_facet Kubo, Ayumi
Kubota, Azusa
Ishioka, Haruki
Hizume, Takuhiro
Ubukata, Masaaki
Nagatomo, Kenji
Satoh, Takaya
Yoshida, Mitsuyoshi
Uematsu, Fuminori
author_sort Kubo, Ayumi
collection PubMed
description Electron ionization (EI) mass spectrum library searching is usually performed to identify a compound in gas chromatography/mass spectrometry. However, compounds whose EI mass spectra are registered in the library are still limited compared to the popular compound databases. This means that there are compounds that cannot be identified by conventional library searching but also may result in false positives. In this report, we report on the development of a machine learning model, which was trained using chemical formulae and EI mass spectra, that can predict the EI mass spectrum from the chemical structure. It allowed us to create a predicted EI mass spectrum database with predicted EI mass spectra for 100 million compounds in PubChem. We also propose a method for improving library searching time and accuracy that includes an extensive mass spectrum library.
format Online
Article
Text
id pubmed-10209659
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Mass Spectrometry Society of Japan
record_format MEDLINE/PubMed
spelling pubmed-102096592023-05-26 Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method Kubo, Ayumi Kubota, Azusa Ishioka, Haruki Hizume, Takuhiro Ubukata, Masaaki Nagatomo, Kenji Satoh, Takaya Yoshida, Mitsuyoshi Uematsu, Fuminori Mass Spectrom (Tokyo) Original Article Electron ionization (EI) mass spectrum library searching is usually performed to identify a compound in gas chromatography/mass spectrometry. However, compounds whose EI mass spectra are registered in the library are still limited compared to the popular compound databases. This means that there are compounds that cannot be identified by conventional library searching but also may result in false positives. In this report, we report on the development of a machine learning model, which was trained using chemical formulae and EI mass spectra, that can predict the EI mass spectrum from the chemical structure. It allowed us to create a predicted EI mass spectrum database with predicted EI mass spectra for 100 million compounds in PubChem. We also propose a method for improving library searching time and accuracy that includes an extensive mass spectrum library. The Mass Spectrometry Society of Japan 2023 2023-04-13 /pmc/articles/PMC10209659/ /pubmed/37250593 http://dx.doi.org/10.5702/massspectrometry.A0120 Text en Copyright © 2023 Kubo, Azusa Kubota, Haruki Ishioka, Takuhiro Hizume, Masaaki Ubukata, Kenji Nagatomo, Takaya Satoh, Mitsuyoshi Yoshida, and Fuminori Uematsu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of Creative Commons Attribution Non-Commercial 4.0 International License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Article
Kubo, Ayumi
Kubota, Azusa
Ishioka, Haruki
Hizume, Takuhiro
Ubukata, Masaaki
Nagatomo, Kenji
Satoh, Takaya
Yoshida, Mitsuyoshi
Uematsu, Fuminori
Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method
title Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method
title_full Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method
title_fullStr Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method
title_full_unstemmed Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method
title_short Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method
title_sort construction of a mass spectrum library containing predicted electron ionization mass spectra prepared using a machine learning model and the development of an efficient search method
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209659/
https://www.ncbi.nlm.nih.gov/pubmed/37250593
http://dx.doi.org/10.5702/massspectrometry.A0120
work_keys_str_mv AT kuboayumi constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod
AT kubotaazusa constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod
AT ishiokaharuki constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod
AT hizumetakuhiro constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod
AT ubukatamasaaki constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod
AT nagatomokenji constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod
AT satohtakaya constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod
AT yoshidamitsuyoshi constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod
AT uematsufuminori constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod