Cargando…
Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method
Electron ionization (EI) mass spectrum library searching is usually performed to identify a compound in gas chromatography/mass spectrometry. However, compounds whose EI mass spectra are registered in the library are still limited compared to the popular compound databases. This means that there are...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Mass Spectrometry Society of Japan
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209659/ https://www.ncbi.nlm.nih.gov/pubmed/37250593 http://dx.doi.org/10.5702/massspectrometry.A0120 |
_version_ | 1785046923940462592 |
---|---|
author | Kubo, Ayumi Kubota, Azusa Ishioka, Haruki Hizume, Takuhiro Ubukata, Masaaki Nagatomo, Kenji Satoh, Takaya Yoshida, Mitsuyoshi Uematsu, Fuminori |
author_facet | Kubo, Ayumi Kubota, Azusa Ishioka, Haruki Hizume, Takuhiro Ubukata, Masaaki Nagatomo, Kenji Satoh, Takaya Yoshida, Mitsuyoshi Uematsu, Fuminori |
author_sort | Kubo, Ayumi |
collection | PubMed |
description | Electron ionization (EI) mass spectrum library searching is usually performed to identify a compound in gas chromatography/mass spectrometry. However, compounds whose EI mass spectra are registered in the library are still limited compared to the popular compound databases. This means that there are compounds that cannot be identified by conventional library searching but also may result in false positives. In this report, we report on the development of a machine learning model, which was trained using chemical formulae and EI mass spectra, that can predict the EI mass spectrum from the chemical structure. It allowed us to create a predicted EI mass spectrum database with predicted EI mass spectra for 100 million compounds in PubChem. We also propose a method for improving library searching time and accuracy that includes an extensive mass spectrum library. |
format | Online Article Text |
id | pubmed-10209659 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Mass Spectrometry Society of Japan |
record_format | MEDLINE/PubMed |
spelling | pubmed-102096592023-05-26 Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method Kubo, Ayumi Kubota, Azusa Ishioka, Haruki Hizume, Takuhiro Ubukata, Masaaki Nagatomo, Kenji Satoh, Takaya Yoshida, Mitsuyoshi Uematsu, Fuminori Mass Spectrom (Tokyo) Original Article Electron ionization (EI) mass spectrum library searching is usually performed to identify a compound in gas chromatography/mass spectrometry. However, compounds whose EI mass spectra are registered in the library are still limited compared to the popular compound databases. This means that there are compounds that cannot be identified by conventional library searching but also may result in false positives. In this report, we report on the development of a machine learning model, which was trained using chemical formulae and EI mass spectra, that can predict the EI mass spectrum from the chemical structure. It allowed us to create a predicted EI mass spectrum database with predicted EI mass spectra for 100 million compounds in PubChem. We also propose a method for improving library searching time and accuracy that includes an extensive mass spectrum library. The Mass Spectrometry Society of Japan 2023 2023-04-13 /pmc/articles/PMC10209659/ /pubmed/37250593 http://dx.doi.org/10.5702/massspectrometry.A0120 Text en Copyright © 2023 Kubo, Azusa Kubota, Haruki Ishioka, Takuhiro Hizume, Masaaki Ubukata, Kenji Nagatomo, Takaya Satoh, Mitsuyoshi Yoshida, and Fuminori Uematsu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of Creative Commons Attribution Non-Commercial 4.0 International License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Article Kubo, Ayumi Kubota, Azusa Ishioka, Haruki Hizume, Takuhiro Ubukata, Masaaki Nagatomo, Kenji Satoh, Takaya Yoshida, Mitsuyoshi Uematsu, Fuminori Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method |
title | Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method |
title_full | Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method |
title_fullStr | Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method |
title_full_unstemmed | Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method |
title_short | Construction of a Mass Spectrum Library Containing Predicted Electron Ionization Mass Spectra Prepared Using a Machine Learning Model and the Development of an Efficient Search Method |
title_sort | construction of a mass spectrum library containing predicted electron ionization mass spectra prepared using a machine learning model and the development of an efficient search method |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209659/ https://www.ncbi.nlm.nih.gov/pubmed/37250593 http://dx.doi.org/10.5702/massspectrometry.A0120 |
work_keys_str_mv | AT kuboayumi constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod AT kubotaazusa constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod AT ishiokaharuki constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod AT hizumetakuhiro constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod AT ubukatamasaaki constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod AT nagatomokenji constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod AT satohtakaya constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod AT yoshidamitsuyoshi constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod AT uematsufuminori constructionofamassspectrumlibrarycontainingpredictedelectronionizationmassspectrapreparedusingamachinelearningmodelandthedevelopmentofanefficientsearchmethod |