Cargando…

Silver-doped bioactive glass fibres as a potential treatment for wound-associated bacterial biofilms

Chronic wounds are a drain on global health services and remain a major area of unmet clinical need. Chronic wounds are characterised by a stable and stubborn bacterial biofilm which hinders innate immune response and delays or prevents wound healing. Bioactive glass (BG) fibres offer a promising no...

Descripción completa

Detalles Bibliográficos
Autores principales: Shirgill, Sandeep, Poologasundarampillai, Gowsihan, Jabbari, Sara, Ward, John, Kuehne, Sarah A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209705/
https://www.ncbi.nlm.nih.gov/pubmed/37252225
http://dx.doi.org/10.1016/j.bioflm.2023.100115
_version_ 1785046933688025088
author Shirgill, Sandeep
Poologasundarampillai, Gowsihan
Jabbari, Sara
Ward, John
Kuehne, Sarah A.
author_facet Shirgill, Sandeep
Poologasundarampillai, Gowsihan
Jabbari, Sara
Ward, John
Kuehne, Sarah A.
author_sort Shirgill, Sandeep
collection PubMed
description Chronic wounds are a drain on global health services and remain a major area of unmet clinical need. Chronic wounds are characterised by a stable and stubborn bacterial biofilm which hinders innate immune response and delays or prevents wound healing. Bioactive glass (BG) fibres offer a promising novel treatment for chronic wounds by targeting the wound-associated biofilm. In this study, the antimicrobial properties of silver-doped BG fibres were tested against Pseudomonas aeruginosa biofilms, which are commonly found in chronic wound infections. Results showed that BG fibres doped with silver resulted in a 5log10 reduction in biofilm formation whereas silver-free fibres only reduced formation by log10, therefore silver-doped fibres possess stronger antimicrobial effects. Moreover, there appeared to be a synergistic effect between the fibres and the silver as the application of the silver-doped fibres placed directly in contact with the forming biofilm resulted in a higher reduction in biofilm formation compared to treatments either: using the dissolution ions, using BG powder, or when the fibres were placed in an insert above the biofilm, inhibiting physical contact, instead. This suggests that the physical properties of the fibres, as well as silver, influence biofilm formation. Finally, results demonstrated that silver chloride, which is not antimicrobial, forms and the concentrations of antimicrobial silver species, namely silver ions and nanoparticles, reduce over time when fibres are soaked in cell culture media, which partially explains why the silver-doped dissolution ions contained lower antimicrobial activity compared to the fibres. As silver chloride is more likely to form with increased temperature and time, the antimicrobial activity of silver-containing dissolution ions is highly dependent on the length of ageing and storage conditions. Many studies investigate the antimicrobial and cytotoxic properties of biomaterials through their dissolution products. However, instability of antimicrobial silver species due to silver chloride formation and its effect on antimicrobial properties of silver-based biomaterials has not been reported before and could influence past and future dissolution-based assays as results showed that the antimicrobial activity of silver-based dissolution ions can vary greatly depending on post processing steps and can therefore produce misleading data.
format Online
Article
Text
id pubmed-10209705
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-102097052023-05-26 Silver-doped bioactive glass fibres as a potential treatment for wound-associated bacterial biofilms Shirgill, Sandeep Poologasundarampillai, Gowsihan Jabbari, Sara Ward, John Kuehne, Sarah A. Biofilm Article Chronic wounds are a drain on global health services and remain a major area of unmet clinical need. Chronic wounds are characterised by a stable and stubborn bacterial biofilm which hinders innate immune response and delays or prevents wound healing. Bioactive glass (BG) fibres offer a promising novel treatment for chronic wounds by targeting the wound-associated biofilm. In this study, the antimicrobial properties of silver-doped BG fibres were tested against Pseudomonas aeruginosa biofilms, which are commonly found in chronic wound infections. Results showed that BG fibres doped with silver resulted in a 5log10 reduction in biofilm formation whereas silver-free fibres only reduced formation by log10, therefore silver-doped fibres possess stronger antimicrobial effects. Moreover, there appeared to be a synergistic effect between the fibres and the silver as the application of the silver-doped fibres placed directly in contact with the forming biofilm resulted in a higher reduction in biofilm formation compared to treatments either: using the dissolution ions, using BG powder, or when the fibres were placed in an insert above the biofilm, inhibiting physical contact, instead. This suggests that the physical properties of the fibres, as well as silver, influence biofilm formation. Finally, results demonstrated that silver chloride, which is not antimicrobial, forms and the concentrations of antimicrobial silver species, namely silver ions and nanoparticles, reduce over time when fibres are soaked in cell culture media, which partially explains why the silver-doped dissolution ions contained lower antimicrobial activity compared to the fibres. As silver chloride is more likely to form with increased temperature and time, the antimicrobial activity of silver-containing dissolution ions is highly dependent on the length of ageing and storage conditions. Many studies investigate the antimicrobial and cytotoxic properties of biomaterials through their dissolution products. However, instability of antimicrobial silver species due to silver chloride formation and its effect on antimicrobial properties of silver-based biomaterials has not been reported before and could influence past and future dissolution-based assays as results showed that the antimicrobial activity of silver-based dissolution ions can vary greatly depending on post processing steps and can therefore produce misleading data. Elsevier 2023-05-10 /pmc/articles/PMC10209705/ /pubmed/37252225 http://dx.doi.org/10.1016/j.bioflm.2023.100115 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shirgill, Sandeep
Poologasundarampillai, Gowsihan
Jabbari, Sara
Ward, John
Kuehne, Sarah A.
Silver-doped bioactive glass fibres as a potential treatment for wound-associated bacterial biofilms
title Silver-doped bioactive glass fibres as a potential treatment for wound-associated bacterial biofilms
title_full Silver-doped bioactive glass fibres as a potential treatment for wound-associated bacterial biofilms
title_fullStr Silver-doped bioactive glass fibres as a potential treatment for wound-associated bacterial biofilms
title_full_unstemmed Silver-doped bioactive glass fibres as a potential treatment for wound-associated bacterial biofilms
title_short Silver-doped bioactive glass fibres as a potential treatment for wound-associated bacterial biofilms
title_sort silver-doped bioactive glass fibres as a potential treatment for wound-associated bacterial biofilms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209705/
https://www.ncbi.nlm.nih.gov/pubmed/37252225
http://dx.doi.org/10.1016/j.bioflm.2023.100115
work_keys_str_mv AT shirgillsandeep silverdopedbioactiveglassfibresasapotentialtreatmentforwoundassociatedbacterialbiofilms
AT poologasundarampillaigowsihan silverdopedbioactiveglassfibresasapotentialtreatmentforwoundassociatedbacterialbiofilms
AT jabbarisara silverdopedbioactiveglassfibresasapotentialtreatmentforwoundassociatedbacterialbiofilms
AT wardjohn silverdopedbioactiveglassfibresasapotentialtreatmentforwoundassociatedbacterialbiofilms
AT kuehnesaraha silverdopedbioactiveglassfibresasapotentialtreatmentforwoundassociatedbacterialbiofilms