Cargando…
Data Modeling Using Vital Sign Dynamics for In-hospital Mortality Classification in Patients with Acute Coronary Syndrome
OBJECTIVES: This study compared feature selection by machine learning or expert recommendation in the performance of classification models for in-hospital mortality among patients with acute coronary syndrome (ACS) who underwent percutaneous coronary intervention (PCI). METHODS: A dataset of 1,123 p...
Autores principales: | Limprasert, Sarawuth, Phu-ang, Ajchara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209722/ https://www.ncbi.nlm.nih.gov/pubmed/37190736 http://dx.doi.org/10.4258/hir.2023.29.2.120 |
Ejemplares similares
-
Dynamic vital signs may predict in-hospital mortality in elderly trauma patients
por: Kamata, Kazuhiro, et al.
Publicado: (2020) -
The efficacy and safety outcomes of cardiac resynchronization therapy in patients with heart failure in Thailand: Phramongkutklao experience
por: Limprasert, Sarawuth, et al.
Publicado: (2021) -
Machine learning models for predicting in-hospital mortality in patient with sepsis: Analysis of vital sign dynamics
por: Cheng, Chi-Yung, et al.
Publicado: (2022) -
Vital Block and Vital Sign Server for ECG and Vital Sign Monitoring in a Portable u-Vital System
por: Bae, Tae Wuk, et al.
Publicado: (2020) -
The Association Between Abnormal Vital Signs and Mortality in the Emergency Department
por: Simbawa, Jood H, et al.
Publicado: (2021)