Cargando…
Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins
Background: Biofilm deposit on the composite restoration is a common phenomenon and bacterial growth follows the deposition. The study aims to evaluate Streptococcus mutans (S. mutans) early biofilm formation on the surfaces of various dental composite resins by using the real-time quantitative poly...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209747/ https://www.ncbi.nlm.nih.gov/pubmed/37252523 http://dx.doi.org/10.7759/cureus.38090 |
_version_ | 1785046942929125376 |
---|---|
author | Alqarni, Dhaifallah Nakajima, Masatoshi Tagami, Junji Alzahrani, Mohammed S Sá-Pinto, Ana Clara Alghamdi, Ali Hosaka, Keiichi Alzahrani, Fouad Alsadon, Omar A Alharbi, Raed A Almalki, Shaia S Alzahrani, Abdullah Ali H |
author_facet | Alqarni, Dhaifallah Nakajima, Masatoshi Tagami, Junji Alzahrani, Mohammed S Sá-Pinto, Ana Clara Alghamdi, Ali Hosaka, Keiichi Alzahrani, Fouad Alsadon, Omar A Alharbi, Raed A Almalki, Shaia S Alzahrani, Abdullah Ali H |
author_sort | Alqarni, Dhaifallah |
collection | PubMed |
description | Background: Biofilm deposit on the composite restoration is a common phenomenon and bacterial growth follows the deposition. The study aims to evaluate Streptococcus mutans (S. mutans) early biofilm formation on the surfaces of various dental composite resins by using the real-time quantitative polymerase chain reaction (qPCR) technique. Materials and methods: Thirty-two discs, where eight discs were in each group of Filtek Supreme Ultra (FSU; 3M, St. Paul, MN), Clearfil AP-X (APX; Kuraray Noritake Dental Inc., Tokyo, Japan), Beautifil II (BE2; Shofu, Inc., Kyoto, Japan), and Estelite Sigma Quick (ESQ; Tokuyama Dental, Tokyo, Japan), were fabricated and subjected to S. mutans biofilm formation in an oral biofilm reactor for 12 hours. Contact angles (CA) were measured on the freshly fabricated specimen. The attached biofilms underwent fluorescent microscopy (FM). S. mutans from biofilms were analyzed using a qPCR technique. Surface roughness (Sa) measurements were taken before and after biofilm formation. Scanning electron microscopy (SEM), including energy dispersive X-ray spectrometer (EDS) analysis, was also performed for detecting relative elements on biofilms. Results: The study showed that FSU demonstrated the lowest CA while APX presented the highest values. FM revealed that condensed biofilm clusters were most on FSU. The qPCR results indicated the highest S. mutans DNA copies in the biofilm were on FSU while BE2 was the lowest (p < 0.05). Sa test signified that APX was significantly the lowest among all materials while FSU was the highest (p < 0.05). SEM displayed areas with apparently glucan-free S. mutans more on BE2 compared to APX and ESQ, while FSU had the least. Small white particles detected predominantly on the biofilms of BE2 appeared to be Si, Al, and F extruded from the resin. Conclusion: Differences in early biofilm formation onto various composite resins are dependent on the differences in material compositions and their surface properties. BE2 showed the lowest quantity of biofilm accumulation compared to other resin composites (APX, ESQ, and FSU). This could be attributed to BE2 proprieties as a giomer and fluoride content. |
format | Online Article Text |
id | pubmed-10209747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cureus |
record_format | MEDLINE/PubMed |
spelling | pubmed-102097472023-05-26 Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins Alqarni, Dhaifallah Nakajima, Masatoshi Tagami, Junji Alzahrani, Mohammed S Sá-Pinto, Ana Clara Alghamdi, Ali Hosaka, Keiichi Alzahrani, Fouad Alsadon, Omar A Alharbi, Raed A Almalki, Shaia S Alzahrani, Abdullah Ali H Cureus Dentistry Background: Biofilm deposit on the composite restoration is a common phenomenon and bacterial growth follows the deposition. The study aims to evaluate Streptococcus mutans (S. mutans) early biofilm formation on the surfaces of various dental composite resins by using the real-time quantitative polymerase chain reaction (qPCR) technique. Materials and methods: Thirty-two discs, where eight discs were in each group of Filtek Supreme Ultra (FSU; 3M, St. Paul, MN), Clearfil AP-X (APX; Kuraray Noritake Dental Inc., Tokyo, Japan), Beautifil II (BE2; Shofu, Inc., Kyoto, Japan), and Estelite Sigma Quick (ESQ; Tokuyama Dental, Tokyo, Japan), were fabricated and subjected to S. mutans biofilm formation in an oral biofilm reactor for 12 hours. Contact angles (CA) were measured on the freshly fabricated specimen. The attached biofilms underwent fluorescent microscopy (FM). S. mutans from biofilms were analyzed using a qPCR technique. Surface roughness (Sa) measurements were taken before and after biofilm formation. Scanning electron microscopy (SEM), including energy dispersive X-ray spectrometer (EDS) analysis, was also performed for detecting relative elements on biofilms. Results: The study showed that FSU demonstrated the lowest CA while APX presented the highest values. FM revealed that condensed biofilm clusters were most on FSU. The qPCR results indicated the highest S. mutans DNA copies in the biofilm were on FSU while BE2 was the lowest (p < 0.05). Sa test signified that APX was significantly the lowest among all materials while FSU was the highest (p < 0.05). SEM displayed areas with apparently glucan-free S. mutans more on BE2 compared to APX and ESQ, while FSU had the least. Small white particles detected predominantly on the biofilms of BE2 appeared to be Si, Al, and F extruded from the resin. Conclusion: Differences in early biofilm formation onto various composite resins are dependent on the differences in material compositions and their surface properties. BE2 showed the lowest quantity of biofilm accumulation compared to other resin composites (APX, ESQ, and FSU). This could be attributed to BE2 proprieties as a giomer and fluoride content. Cureus 2023-04-25 /pmc/articles/PMC10209747/ /pubmed/37252523 http://dx.doi.org/10.7759/cureus.38090 Text en Copyright © 2023, Alqarni et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Dentistry Alqarni, Dhaifallah Nakajima, Masatoshi Tagami, Junji Alzahrani, Mohammed S Sá-Pinto, Ana Clara Alghamdi, Ali Hosaka, Keiichi Alzahrani, Fouad Alsadon, Omar A Alharbi, Raed A Almalki, Shaia S Alzahrani, Abdullah Ali H Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins |
title | Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins |
title_full | Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins |
title_fullStr | Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins |
title_full_unstemmed | Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins |
title_short | Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins |
title_sort | study of streptococcus mutans in early biofilms at the surfaces of various dental composite resins |
topic | Dentistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209747/ https://www.ncbi.nlm.nih.gov/pubmed/37252523 http://dx.doi.org/10.7759/cureus.38090 |
work_keys_str_mv | AT alqarnidhaifallah studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT nakajimamasatoshi studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT tagamijunji studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT alzahranimohammeds studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT sapintoanaclara studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT alghamdiali studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT hosakakeiichi studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT alzahranifouad studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT alsadonomara studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT alharbiraeda studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT almalkishaias studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins AT alzahraniabdullahalih studyofstreptococcusmutansinearlybiofilmsatthesurfacesofvariousdentalcompositeresins |