Cargando…
Microscopic Production Characteristics of Pore Crude Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection in Shale Oil Reservoirs
[Image: see text] High-pressure air injection (HPAI) is one of the effective methods to improve shale oil recovery after the primary depletion process. However, the seepage mechanisms and microscopic production characteristics between air and crude oil are complicated in porous media during the air...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210032/ https://www.ncbi.nlm.nih.gov/pubmed/37251129 http://dx.doi.org/10.1021/acsomega.3c01585 |
_version_ | 1785046987516674048 |
---|---|
author | Du, Meng Yang, Zhengming Feng, Chun Yao, Lanlan Chen, Xinliang Li, Haibo |
author_facet | Du, Meng Yang, Zhengming Feng, Chun Yao, Lanlan Chen, Xinliang Li, Haibo |
author_sort | Du, Meng |
collection | PubMed |
description | [Image: see text] High-pressure air injection (HPAI) is one of the effective methods to improve shale oil recovery after the primary depletion process. However, the seepage mechanisms and microscopic production characteristics between air and crude oil are complicated in porous media during the air flooding process. In this paper, an online nuclear magnetic resonance (NMR) dynamic physical simulation method for enhanced oil recovery (EOR) by air injection in shale oil was established by combining high-temperature and high-pressure physical simulation systems with NMR. The microscopic production characteristics of air flooding were investigated by quantifying fluid saturation, recovery, and residual oil distribution in different sizes of pores, and the air displacement mechanism of shale oil was discussed. On this basis, the effects of air oxygen concentration, permeability, injection pressure, and fracture on recovery were studied, and the migration mode of crude oil in fractures was explored. The results show that the shale oil is mainly found in <0.1 μm (small pores), followed by 0.1–1 μm (medium pores), and 1–10 μm (macropores); thus, it is critical to enhancing oil recovery in pores less than 0.1 and 0.1–1 μm. The low-temperature oxidation (LTO) reaction can occur by injecting air into depleted shale reservoirs, which has a certain effect on oil expansion, viscosity reduction, and thermal mixing phases, thereby greatly improving shale oil recovery. There is a positive relationship between air oxygen concentration and oil recovery; the recoveries of small pores and macropores can increase by 3.53 and 4.28%, respectively, and they contribute 45.87–53.68% of the produced oil. High permeability means good pore-throat connectivity and greater oil recovery, and the production degree of crude oil in three types of pores can be increased by 10.36–24.69%. Appropriate injection pressure is beneficial to increasing the oil–gas contact time and delaying gas breakthrough, but high injection pressure will result in early gas channeling, which causes the crude oil in small pores to be difficult to produce. Notably, the matrix can supply oil to fractures due to the mass exchange between matrix fractures and the increase of the oil drainage area, and the recoveries of medium pores and macropores in fractured cores increased by 9.01 and 18.39%, respectively; fractures can act as bridges for matrix crude oil migration, which means that proper fracturing before gas injection can make the EOR better. This study provides a new idea and a theoretical basis for improving shale oil recovery and clarifies the microscopic production characteristics of shale reservoirs. |
format | Online Article Text |
id | pubmed-10210032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-102100322023-05-26 Microscopic Production Characteristics of Pore Crude Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection in Shale Oil Reservoirs Du, Meng Yang, Zhengming Feng, Chun Yao, Lanlan Chen, Xinliang Li, Haibo ACS Omega [Image: see text] High-pressure air injection (HPAI) is one of the effective methods to improve shale oil recovery after the primary depletion process. However, the seepage mechanisms and microscopic production characteristics between air and crude oil are complicated in porous media during the air flooding process. In this paper, an online nuclear magnetic resonance (NMR) dynamic physical simulation method for enhanced oil recovery (EOR) by air injection in shale oil was established by combining high-temperature and high-pressure physical simulation systems with NMR. The microscopic production characteristics of air flooding were investigated by quantifying fluid saturation, recovery, and residual oil distribution in different sizes of pores, and the air displacement mechanism of shale oil was discussed. On this basis, the effects of air oxygen concentration, permeability, injection pressure, and fracture on recovery were studied, and the migration mode of crude oil in fractures was explored. The results show that the shale oil is mainly found in <0.1 μm (small pores), followed by 0.1–1 μm (medium pores), and 1–10 μm (macropores); thus, it is critical to enhancing oil recovery in pores less than 0.1 and 0.1–1 μm. The low-temperature oxidation (LTO) reaction can occur by injecting air into depleted shale reservoirs, which has a certain effect on oil expansion, viscosity reduction, and thermal mixing phases, thereby greatly improving shale oil recovery. There is a positive relationship between air oxygen concentration and oil recovery; the recoveries of small pores and macropores can increase by 3.53 and 4.28%, respectively, and they contribute 45.87–53.68% of the produced oil. High permeability means good pore-throat connectivity and greater oil recovery, and the production degree of crude oil in three types of pores can be increased by 10.36–24.69%. Appropriate injection pressure is beneficial to increasing the oil–gas contact time and delaying gas breakthrough, but high injection pressure will result in early gas channeling, which causes the crude oil in small pores to be difficult to produce. Notably, the matrix can supply oil to fractures due to the mass exchange between matrix fractures and the increase of the oil drainage area, and the recoveries of medium pores and macropores in fractured cores increased by 9.01 and 18.39%, respectively; fractures can act as bridges for matrix crude oil migration, which means that proper fracturing before gas injection can make the EOR better. This study provides a new idea and a theoretical basis for improving shale oil recovery and clarifies the microscopic production characteristics of shale reservoirs. American Chemical Society 2023-05-10 /pmc/articles/PMC10210032/ /pubmed/37251129 http://dx.doi.org/10.1021/acsomega.3c01585 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Du, Meng Yang, Zhengming Feng, Chun Yao, Lanlan Chen, Xinliang Li, Haibo Microscopic Production Characteristics of Pore Crude Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection in Shale Oil Reservoirs |
title | Microscopic Production
Characteristics of Pore Crude
Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection
in Shale Oil Reservoirs |
title_full | Microscopic Production
Characteristics of Pore Crude
Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection
in Shale Oil Reservoirs |
title_fullStr | Microscopic Production
Characteristics of Pore Crude
Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection
in Shale Oil Reservoirs |
title_full_unstemmed | Microscopic Production
Characteristics of Pore Crude
Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection
in Shale Oil Reservoirs |
title_short | Microscopic Production
Characteristics of Pore Crude
Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection
in Shale Oil Reservoirs |
title_sort | microscopic production
characteristics of pore crude
oil and influencing factors during enhanced oil recovery by air injection
in shale oil reservoirs |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210032/ https://www.ncbi.nlm.nih.gov/pubmed/37251129 http://dx.doi.org/10.1021/acsomega.3c01585 |
work_keys_str_mv | AT dumeng microscopicproductioncharacteristicsofporecrudeoilandinfluencingfactorsduringenhancedoilrecoverybyairinjectioninshaleoilreservoirs AT yangzhengming microscopicproductioncharacteristicsofporecrudeoilandinfluencingfactorsduringenhancedoilrecoverybyairinjectioninshaleoilreservoirs AT fengchun microscopicproductioncharacteristicsofporecrudeoilandinfluencingfactorsduringenhancedoilrecoverybyairinjectioninshaleoilreservoirs AT yaolanlan microscopicproductioncharacteristicsofporecrudeoilandinfluencingfactorsduringenhancedoilrecoverybyairinjectioninshaleoilreservoirs AT chenxinliang microscopicproductioncharacteristicsofporecrudeoilandinfluencingfactorsduringenhancedoilrecoverybyairinjectioninshaleoilreservoirs AT lihaibo microscopicproductioncharacteristicsofporecrudeoilandinfluencingfactorsduringenhancedoilrecoverybyairinjectioninshaleoilreservoirs |