Cargando…
Gold-Nanoparticles-Enhanced Production of Reactive Oxygen Species in Cells at Spread-Out Bragg Peak under Proton Beam Radiation
[Image: see text] This study investigates the radiobiological effects of gold nanoparticles (GNPs) as radiosensitizers for proton beam therapy (PBT). Specifically, we explore the enhanced production of reactive oxygen species (ROS) in GNP-loaded tumor cells irradiated by a 230 MeV proton beam in a s...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210040/ https://www.ncbi.nlm.nih.gov/pubmed/37251180 http://dx.doi.org/10.1021/acsomega.3c01025 |
Sumario: | [Image: see text] This study investigates the radiobiological effects of gold nanoparticles (GNPs) as radiosensitizers for proton beam therapy (PBT). Specifically, we explore the enhanced production of reactive oxygen species (ROS) in GNP-loaded tumor cells irradiated by a 230 MeV proton beam in a spread-out Bragg peak (SOBP) zone obtained by a passive scattering system. Our findings indicate that the radiosensitization enhancement factor is 1.24 at 30% cell survival fraction, 8 days after 6 Gy proton beam irradiation. Since protons deposit the majority of their energy at the SOBP region and interact with GNPs to induce more ejected electrons from the high-Z GNPs, these ejected electrons then react with water molecules to produce excessive ROS that can damage cellular organelles. Laser scanning confocal microscopy reveals the excessive ROS induced inside the GNP-loaded cells immediately after proton irradiation. Furthermore, the damage to cytoskeletons and mitochondrial dysfunction in GNP-loaded cells caused by the induced ROS becomes significantly severe, 48 h after proton irradiation. Our biological evidence suggests that the cytotoxicity of GNP-enhanced ROS production has the potential to increase the tumoricidal efficacy of PBT. |
---|