Cargando…

Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes

[Image: see text] An algebraic procedure for overcoming the multiple degeneracy problem in eigenvalue (root) determination of the characteristic polynomial of 3-fold symmetrical molecular graphs is given. This leads to the tabulation of Hückel molecular orbital binding energy (E(π)) and eigenvalues...

Descripción completa

Detalles Bibliográficos
Autor principal: Dias, Jerry Ray
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210180/
https://www.ncbi.nlm.nih.gov/pubmed/37251116
http://dx.doi.org/10.1021/acsomega.3c02488
_version_ 1785047013685985280
author Dias, Jerry Ray
author_facet Dias, Jerry Ray
author_sort Dias, Jerry Ray
collection PubMed
description [Image: see text] An algebraic procedure for overcoming the multiple degeneracy problem in eigenvalue (root) determination of the characteristic polynomial of 3-fold symmetrical molecular graphs is given. This leads to the tabulation of Hückel molecular orbital binding energy (E(π)) and eigenvalues (roots) for [2]triangulene to [9]trianguene for the first time. Triangulenes are the smallest possible condensed benzenoid polyradicals.
format Online
Article
Text
id pubmed-10210180
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-102101802023-05-26 Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes Dias, Jerry Ray ACS Omega [Image: see text] An algebraic procedure for overcoming the multiple degeneracy problem in eigenvalue (root) determination of the characteristic polynomial of 3-fold symmetrical molecular graphs is given. This leads to the tabulation of Hückel molecular orbital binding energy (E(π)) and eigenvalues (roots) for [2]triangulene to [9]trianguene for the first time. Triangulenes are the smallest possible condensed benzenoid polyradicals. American Chemical Society 2023-05-09 /pmc/articles/PMC10210180/ /pubmed/37251116 http://dx.doi.org/10.1021/acsomega.3c02488 Text en © 2023 The Author. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Dias, Jerry Ray
Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes
title Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes
title_full Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes
title_fullStr Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes
title_full_unstemmed Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes
title_short Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes
title_sort algebraic method for solving multiple degenerate eigenvalues in [r]triangulenes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210180/
https://www.ncbi.nlm.nih.gov/pubmed/37251116
http://dx.doi.org/10.1021/acsomega.3c02488
work_keys_str_mv AT diasjerryray algebraicmethodforsolvingmultipledegenerateeigenvaluesinrtriangulenes