Cargando…
Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes
[Image: see text] An algebraic procedure for overcoming the multiple degeneracy problem in eigenvalue (root) determination of the characteristic polynomial of 3-fold symmetrical molecular graphs is given. This leads to the tabulation of Hückel molecular orbital binding energy (E(π)) and eigenvalues...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210180/ https://www.ncbi.nlm.nih.gov/pubmed/37251116 http://dx.doi.org/10.1021/acsomega.3c02488 |
_version_ | 1785047013685985280 |
---|---|
author | Dias, Jerry Ray |
author_facet | Dias, Jerry Ray |
author_sort | Dias, Jerry Ray |
collection | PubMed |
description | [Image: see text] An algebraic procedure for overcoming the multiple degeneracy problem in eigenvalue (root) determination of the characteristic polynomial of 3-fold symmetrical molecular graphs is given. This leads to the tabulation of Hückel molecular orbital binding energy (E(π)) and eigenvalues (roots) for [2]triangulene to [9]trianguene for the first time. Triangulenes are the smallest possible condensed benzenoid polyradicals. |
format | Online Article Text |
id | pubmed-10210180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-102101802023-05-26 Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes Dias, Jerry Ray ACS Omega [Image: see text] An algebraic procedure for overcoming the multiple degeneracy problem in eigenvalue (root) determination of the characteristic polynomial of 3-fold symmetrical molecular graphs is given. This leads to the tabulation of Hückel molecular orbital binding energy (E(π)) and eigenvalues (roots) for [2]triangulene to [9]trianguene for the first time. Triangulenes are the smallest possible condensed benzenoid polyradicals. American Chemical Society 2023-05-09 /pmc/articles/PMC10210180/ /pubmed/37251116 http://dx.doi.org/10.1021/acsomega.3c02488 Text en © 2023 The Author. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Dias, Jerry Ray Algebraic Method for Solving Multiple Degenerate Eigenvalues in [r]Triangulenes |
title | Algebraic Method
for Solving Multiple Degenerate Eigenvalues
in [r]Triangulenes |
title_full | Algebraic Method
for Solving Multiple Degenerate Eigenvalues
in [r]Triangulenes |
title_fullStr | Algebraic Method
for Solving Multiple Degenerate Eigenvalues
in [r]Triangulenes |
title_full_unstemmed | Algebraic Method
for Solving Multiple Degenerate Eigenvalues
in [r]Triangulenes |
title_short | Algebraic Method
for Solving Multiple Degenerate Eigenvalues
in [r]Triangulenes |
title_sort | algebraic method
for solving multiple degenerate eigenvalues
in [r]triangulenes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210180/ https://www.ncbi.nlm.nih.gov/pubmed/37251116 http://dx.doi.org/10.1021/acsomega.3c02488 |
work_keys_str_mv | AT diasjerryray algebraicmethodforsolvingmultipledegenerateeigenvaluesinrtriangulenes |