Cargando…

Measuring Electron Correlation: The Impact of Symmetry and Orbital Transformations

[Image: see text] In this perspective, the various measures of electron correlation used in wave function theory, density functional theory and quantum information theory are briefly reviewed. We then focus on a more traditional metric based on dominant weights in the full configuration solution and...

Descripción completa

Detalles Bibliográficos
Autores principales: Izsák, Róbert, Ivanov, Aleksei V., Blunt, Nick S., Holzmann, Nicole, Neese, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210250/
https://www.ncbi.nlm.nih.gov/pubmed/37022051
http://dx.doi.org/10.1021/acs.jctc.3c00122
Descripción
Sumario:[Image: see text] In this perspective, the various measures of electron correlation used in wave function theory, density functional theory and quantum information theory are briefly reviewed. We then focus on a more traditional metric based on dominant weights in the full configuration solution and discuss its behavior with respect to the choice of the N-electron and the one-electron basis. The impact of symmetry is discussed, and we emphasize that the distinction among determinants, configuration state functions and configurations as reference functions is useful because the latter incorporate spin-coupling into the reference and should thus reduce the complexity of the wave function expansion. The corresponding notions of single determinant, single spin-coupling and single configuration wave functions are discussed and the effect of orbital rotations on the multireference character is reviewed by analyzing a simple model system. In molecular systems, the extent of correlation effects should be limited by finite system size and in most cases the appropriate choices of one-electron and N-electron bases should be able to incorporate these into a low-complexity reference function, often a single configurational one.