Cargando…

Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort

OBJECTIVES: The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. METHODS: Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021–Jan...

Descripción completa

Detalles Bibliográficos
Autores principales: Giannella, Maddalena, Huth, Manuel, Righi, Elda, Hasenauer, Jan, Marconi, Lorenzo, Konnova, Angelina, Gupta, Akshita, Hotterbeekx, An, Berkell, Matilda, Palacios-Baena, Zaira R., Morelli, Maria Cristina, Tamè, Mariarosa, Busutti, Marco, Potena, Luciano, Salvaterra, Elena, Feltrin, Giuseppe, Gerosa, Gino, Furian, Lucrezia, Burra, Patrizia, Piano, Salvatore, Cillo, Umberto, Cananzi, Mara, Loy, Monica, Zaza, Gianluigi, Onorati, Francesco, Carraro, Amedeo, Gastaldon, Fiorella, Nordio, Maurizio, Kumar-Singh, Samir, Baño, Jesús Rodríguez, Lazzarotto, Tiziana, Viale, Pierluigi, Tacconelli, Evelina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212001/
https://www.ncbi.nlm.nih.gov/pubmed/37150358
http://dx.doi.org/10.1016/j.cmi.2023.04.027
_version_ 1785047370554146816
author Giannella, Maddalena
Huth, Manuel
Righi, Elda
Hasenauer, Jan
Marconi, Lorenzo
Konnova, Angelina
Gupta, Akshita
Hotterbeekx, An
Berkell, Matilda
Palacios-Baena, Zaira R.
Morelli, Maria Cristina
Tamè, Mariarosa
Busutti, Marco
Potena, Luciano
Salvaterra, Elena
Feltrin, Giuseppe
Gerosa, Gino
Furian, Lucrezia
Burra, Patrizia
Piano, Salvatore
Cillo, Umberto
Cananzi, Mara
Loy, Monica
Zaza, Gianluigi
Onorati, Francesco
Carraro, Amedeo
Gastaldon, Fiorella
Nordio, Maurizio
Kumar-Singh, Samir
Baño, Jesús Rodríguez
Lazzarotto, Tiziana
Viale, Pierluigi
Tacconelli, Evelina
author_facet Giannella, Maddalena
Huth, Manuel
Righi, Elda
Hasenauer, Jan
Marconi, Lorenzo
Konnova, Angelina
Gupta, Akshita
Hotterbeekx, An
Berkell, Matilda
Palacios-Baena, Zaira R.
Morelli, Maria Cristina
Tamè, Mariarosa
Busutti, Marco
Potena, Luciano
Salvaterra, Elena
Feltrin, Giuseppe
Gerosa, Gino
Furian, Lucrezia
Burra, Patrizia
Piano, Salvatore
Cillo, Umberto
Cananzi, Mara
Loy, Monica
Zaza, Gianluigi
Onorati, Francesco
Carraro, Amedeo
Gastaldon, Fiorella
Nordio, Maurizio
Kumar-Singh, Samir
Baño, Jesús Rodríguez
Lazzarotto, Tiziana
Viale, Pierluigi
Tacconelli, Evelina
author_sort Giannella, Maddalena
collection PubMed
description OBJECTIVES: The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. METHODS: Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021–January 2022) at six hospitals in Italy and Spain. AbR was assessed at first dose (t(0)), second dose (t(1)), 3 ± 1 month (t(2)), and 1 month after third dose (t(3)). Negative AbR at t(3) was defined as an anti-receptor binding domain titre <45 BAU/mL. Machine learning models were developed to predict the individual risk of negative (vs. positive) AbR using age, type of transplant, time between transplant and vaccination, immunosuppressive drugs, type of vaccine, and graft function as covariates, subsequently assessed using a validation cohort. RESULTS: Overall, 1615 SOT recipients (1072 [66.3%] males; mean age±standard deviation [SD], 57.85 ± 13.77) were enrolled, and 1211 received three vaccination doses. Negative AbR rate decreased from 93.66% (886/946) to 21.90% (202/923) from t(0) to t(3). Univariate analysis showed that older patients (mean age, 60.21 ± 11.51 vs. 58.11 ± 13.08), anti-metabolites (57.9% vs. 35.1%), steroids (52.9% vs. 38.5%), recent transplantation (<3 years) (17.8% vs. 2.3%), and kidney, heart, or lung compared with liver transplantation (25%, 31.8%, 30.4% vs. 5.5%) had a higher likelihood of negative AbR. Machine learning (ML) algorithms showing best prediction performance were logistic regression (precision-recall curve-PRAUC mean 0.37 [95%CI 0.36–0.39]) and k-Nearest Neighbours (PRAUC 0.36 [0.35–0.37]). DISCUSSION: Almost a quarter of SOT recipients showed negative AbR after first booster dosage. Unfortunately, clinical information cannot efficiently predict negative AbR even with ML algorithms.
format Online
Article
Text
id pubmed-10212001
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.
record_format MEDLINE/PubMed
spelling pubmed-102120012023-05-26 Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort Giannella, Maddalena Huth, Manuel Righi, Elda Hasenauer, Jan Marconi, Lorenzo Konnova, Angelina Gupta, Akshita Hotterbeekx, An Berkell, Matilda Palacios-Baena, Zaira R. Morelli, Maria Cristina Tamè, Mariarosa Busutti, Marco Potena, Luciano Salvaterra, Elena Feltrin, Giuseppe Gerosa, Gino Furian, Lucrezia Burra, Patrizia Piano, Salvatore Cillo, Umberto Cananzi, Mara Loy, Monica Zaza, Gianluigi Onorati, Francesco Carraro, Amedeo Gastaldon, Fiorella Nordio, Maurizio Kumar-Singh, Samir Baño, Jesús Rodríguez Lazzarotto, Tiziana Viale, Pierluigi Tacconelli, Evelina Clin Microbiol Infect Original Article OBJECTIVES: The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. METHODS: Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021–January 2022) at six hospitals in Italy and Spain. AbR was assessed at first dose (t(0)), second dose (t(1)), 3 ± 1 month (t(2)), and 1 month after third dose (t(3)). Negative AbR at t(3) was defined as an anti-receptor binding domain titre <45 BAU/mL. Machine learning models were developed to predict the individual risk of negative (vs. positive) AbR using age, type of transplant, time between transplant and vaccination, immunosuppressive drugs, type of vaccine, and graft function as covariates, subsequently assessed using a validation cohort. RESULTS: Overall, 1615 SOT recipients (1072 [66.3%] males; mean age±standard deviation [SD], 57.85 ± 13.77) were enrolled, and 1211 received three vaccination doses. Negative AbR rate decreased from 93.66% (886/946) to 21.90% (202/923) from t(0) to t(3). Univariate analysis showed that older patients (mean age, 60.21 ± 11.51 vs. 58.11 ± 13.08), anti-metabolites (57.9% vs. 35.1%), steroids (52.9% vs. 38.5%), recent transplantation (<3 years) (17.8% vs. 2.3%), and kidney, heart, or lung compared with liver transplantation (25%, 31.8%, 30.4% vs. 5.5%) had a higher likelihood of negative AbR. Machine learning (ML) algorithms showing best prediction performance were logistic regression (precision-recall curve-PRAUC mean 0.37 [95%CI 0.36–0.39]) and k-Nearest Neighbours (PRAUC 0.36 [0.35–0.37]). DISCUSSION: Almost a quarter of SOT recipients showed negative AbR after first booster dosage. Unfortunately, clinical information cannot efficiently predict negative AbR even with ML algorithms. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. 2023-05-06 /pmc/articles/PMC10212001/ /pubmed/37150358 http://dx.doi.org/10.1016/j.cmi.2023.04.027 Text en © 2023 Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Original Article
Giannella, Maddalena
Huth, Manuel
Righi, Elda
Hasenauer, Jan
Marconi, Lorenzo
Konnova, Angelina
Gupta, Akshita
Hotterbeekx, An
Berkell, Matilda
Palacios-Baena, Zaira R.
Morelli, Maria Cristina
Tamè, Mariarosa
Busutti, Marco
Potena, Luciano
Salvaterra, Elena
Feltrin, Giuseppe
Gerosa, Gino
Furian, Lucrezia
Burra, Patrizia
Piano, Salvatore
Cillo, Umberto
Cananzi, Mara
Loy, Monica
Zaza, Gianluigi
Onorati, Francesco
Carraro, Amedeo
Gastaldon, Fiorella
Nordio, Maurizio
Kumar-Singh, Samir
Baño, Jesús Rodríguez
Lazzarotto, Tiziana
Viale, Pierluigi
Tacconelli, Evelina
Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort
title Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort
title_full Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort
title_fullStr Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort
title_full_unstemmed Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort
title_short Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort
title_sort using machine learning to predict antibody response to sars-cov-2 vaccination in solid organ transplant recipients: the multicentre orchestra cohort
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212001/
https://www.ncbi.nlm.nih.gov/pubmed/37150358
http://dx.doi.org/10.1016/j.cmi.2023.04.027
work_keys_str_mv AT giannellamaddalena usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT huthmanuel usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT righielda usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT hasenauerjan usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT marconilorenzo usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT konnovaangelina usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT guptaakshita usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT hotterbeekxan usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT berkellmatilda usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT palaciosbaenazairar usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT morellimariacristina usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT tamemariarosa usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT busuttimarco usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT potenaluciano usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT salvaterraelena usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT feltringiuseppe usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT gerosagino usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT furianlucrezia usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT burrapatrizia usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT pianosalvatore usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT cilloumberto usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT cananzimara usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT loymonica usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT zazagianluigi usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT onoratifrancesco usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT carraroamedeo usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT gastaldonfiorella usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT nordiomaurizio usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT kumarsinghsamir usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT banojesusrodriguez usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT lazzarottotiziana usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT vialepierluigi usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort
AT tacconellievelina usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort