Cargando…
Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort
OBJECTIVES: The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. METHODS: Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021–Jan...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212001/ https://www.ncbi.nlm.nih.gov/pubmed/37150358 http://dx.doi.org/10.1016/j.cmi.2023.04.027 |
_version_ | 1785047370554146816 |
---|---|
author | Giannella, Maddalena Huth, Manuel Righi, Elda Hasenauer, Jan Marconi, Lorenzo Konnova, Angelina Gupta, Akshita Hotterbeekx, An Berkell, Matilda Palacios-Baena, Zaira R. Morelli, Maria Cristina Tamè, Mariarosa Busutti, Marco Potena, Luciano Salvaterra, Elena Feltrin, Giuseppe Gerosa, Gino Furian, Lucrezia Burra, Patrizia Piano, Salvatore Cillo, Umberto Cananzi, Mara Loy, Monica Zaza, Gianluigi Onorati, Francesco Carraro, Amedeo Gastaldon, Fiorella Nordio, Maurizio Kumar-Singh, Samir Baño, Jesús Rodríguez Lazzarotto, Tiziana Viale, Pierluigi Tacconelli, Evelina |
author_facet | Giannella, Maddalena Huth, Manuel Righi, Elda Hasenauer, Jan Marconi, Lorenzo Konnova, Angelina Gupta, Akshita Hotterbeekx, An Berkell, Matilda Palacios-Baena, Zaira R. Morelli, Maria Cristina Tamè, Mariarosa Busutti, Marco Potena, Luciano Salvaterra, Elena Feltrin, Giuseppe Gerosa, Gino Furian, Lucrezia Burra, Patrizia Piano, Salvatore Cillo, Umberto Cananzi, Mara Loy, Monica Zaza, Gianluigi Onorati, Francesco Carraro, Amedeo Gastaldon, Fiorella Nordio, Maurizio Kumar-Singh, Samir Baño, Jesús Rodríguez Lazzarotto, Tiziana Viale, Pierluigi Tacconelli, Evelina |
author_sort | Giannella, Maddalena |
collection | PubMed |
description | OBJECTIVES: The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. METHODS: Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021–January 2022) at six hospitals in Italy and Spain. AbR was assessed at first dose (t(0)), second dose (t(1)), 3 ± 1 month (t(2)), and 1 month after third dose (t(3)). Negative AbR at t(3) was defined as an anti-receptor binding domain titre <45 BAU/mL. Machine learning models were developed to predict the individual risk of negative (vs. positive) AbR using age, type of transplant, time between transplant and vaccination, immunosuppressive drugs, type of vaccine, and graft function as covariates, subsequently assessed using a validation cohort. RESULTS: Overall, 1615 SOT recipients (1072 [66.3%] males; mean age±standard deviation [SD], 57.85 ± 13.77) were enrolled, and 1211 received three vaccination doses. Negative AbR rate decreased from 93.66% (886/946) to 21.90% (202/923) from t(0) to t(3). Univariate analysis showed that older patients (mean age, 60.21 ± 11.51 vs. 58.11 ± 13.08), anti-metabolites (57.9% vs. 35.1%), steroids (52.9% vs. 38.5%), recent transplantation (<3 years) (17.8% vs. 2.3%), and kidney, heart, or lung compared with liver transplantation (25%, 31.8%, 30.4% vs. 5.5%) had a higher likelihood of negative AbR. Machine learning (ML) algorithms showing best prediction performance were logistic regression (precision-recall curve-PRAUC mean 0.37 [95%CI 0.36–0.39]) and k-Nearest Neighbours (PRAUC 0.36 [0.35–0.37]). DISCUSSION: Almost a quarter of SOT recipients showed negative AbR after first booster dosage. Unfortunately, clinical information cannot efficiently predict negative AbR even with ML algorithms. |
format | Online Article Text |
id | pubmed-10212001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102120012023-05-26 Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort Giannella, Maddalena Huth, Manuel Righi, Elda Hasenauer, Jan Marconi, Lorenzo Konnova, Angelina Gupta, Akshita Hotterbeekx, An Berkell, Matilda Palacios-Baena, Zaira R. Morelli, Maria Cristina Tamè, Mariarosa Busutti, Marco Potena, Luciano Salvaterra, Elena Feltrin, Giuseppe Gerosa, Gino Furian, Lucrezia Burra, Patrizia Piano, Salvatore Cillo, Umberto Cananzi, Mara Loy, Monica Zaza, Gianluigi Onorati, Francesco Carraro, Amedeo Gastaldon, Fiorella Nordio, Maurizio Kumar-Singh, Samir Baño, Jesús Rodríguez Lazzarotto, Tiziana Viale, Pierluigi Tacconelli, Evelina Clin Microbiol Infect Original Article OBJECTIVES: The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. METHODS: Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021–January 2022) at six hospitals in Italy and Spain. AbR was assessed at first dose (t(0)), second dose (t(1)), 3 ± 1 month (t(2)), and 1 month after third dose (t(3)). Negative AbR at t(3) was defined as an anti-receptor binding domain titre <45 BAU/mL. Machine learning models were developed to predict the individual risk of negative (vs. positive) AbR using age, type of transplant, time between transplant and vaccination, immunosuppressive drugs, type of vaccine, and graft function as covariates, subsequently assessed using a validation cohort. RESULTS: Overall, 1615 SOT recipients (1072 [66.3%] males; mean age±standard deviation [SD], 57.85 ± 13.77) were enrolled, and 1211 received three vaccination doses. Negative AbR rate decreased from 93.66% (886/946) to 21.90% (202/923) from t(0) to t(3). Univariate analysis showed that older patients (mean age, 60.21 ± 11.51 vs. 58.11 ± 13.08), anti-metabolites (57.9% vs. 35.1%), steroids (52.9% vs. 38.5%), recent transplantation (<3 years) (17.8% vs. 2.3%), and kidney, heart, or lung compared with liver transplantation (25%, 31.8%, 30.4% vs. 5.5%) had a higher likelihood of negative AbR. Machine learning (ML) algorithms showing best prediction performance were logistic regression (precision-recall curve-PRAUC mean 0.37 [95%CI 0.36–0.39]) and k-Nearest Neighbours (PRAUC 0.36 [0.35–0.37]). DISCUSSION: Almost a quarter of SOT recipients showed negative AbR after first booster dosage. Unfortunately, clinical information cannot efficiently predict negative AbR even with ML algorithms. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. 2023-05-06 /pmc/articles/PMC10212001/ /pubmed/37150358 http://dx.doi.org/10.1016/j.cmi.2023.04.027 Text en © 2023 Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Original Article Giannella, Maddalena Huth, Manuel Righi, Elda Hasenauer, Jan Marconi, Lorenzo Konnova, Angelina Gupta, Akshita Hotterbeekx, An Berkell, Matilda Palacios-Baena, Zaira R. Morelli, Maria Cristina Tamè, Mariarosa Busutti, Marco Potena, Luciano Salvaterra, Elena Feltrin, Giuseppe Gerosa, Gino Furian, Lucrezia Burra, Patrizia Piano, Salvatore Cillo, Umberto Cananzi, Mara Loy, Monica Zaza, Gianluigi Onorati, Francesco Carraro, Amedeo Gastaldon, Fiorella Nordio, Maurizio Kumar-Singh, Samir Baño, Jesús Rodríguez Lazzarotto, Tiziana Viale, Pierluigi Tacconelli, Evelina Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort |
title | Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort |
title_full | Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort |
title_fullStr | Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort |
title_full_unstemmed | Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort |
title_short | Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort |
title_sort | using machine learning to predict antibody response to sars-cov-2 vaccination in solid organ transplant recipients: the multicentre orchestra cohort |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212001/ https://www.ncbi.nlm.nih.gov/pubmed/37150358 http://dx.doi.org/10.1016/j.cmi.2023.04.027 |
work_keys_str_mv | AT giannellamaddalena usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT huthmanuel usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT righielda usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT hasenauerjan usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT marconilorenzo usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT konnovaangelina usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT guptaakshita usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT hotterbeekxan usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT berkellmatilda usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT palaciosbaenazairar usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT morellimariacristina usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT tamemariarosa usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT busuttimarco usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT potenaluciano usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT salvaterraelena usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT feltringiuseppe usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT gerosagino usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT furianlucrezia usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT burrapatrizia usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT pianosalvatore usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT cilloumberto usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT cananzimara usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT loymonica usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT zazagianluigi usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT onoratifrancesco usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT carraroamedeo usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT gastaldonfiorella usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT nordiomaurizio usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT kumarsinghsamir usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT banojesusrodriguez usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT lazzarottotiziana usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT vialepierluigi usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort AT tacconellievelina usingmachinelearningtopredictantibodyresponsetosarscov2vaccinationinsolidorgantransplantrecipientsthemulticentreorchestracohort |