Cargando…
Semi-supervised nuclei segmentation based on multi-edge features fusion attention network
The morphology of the nuclei represents most of the clinical pathological information, and nuclei segmentation is a vital step in current automated histopathological image analysis. Supervised machine learning-based segmentation models have already achieved outstanding performance with sufficiently...
Autores principales: | Li, Huachang, Zhong, Jing, Lin, Liyan, Chen, Yanping, Shi, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212084/ https://www.ncbi.nlm.nih.gov/pubmed/37228137 http://dx.doi.org/10.1371/journal.pone.0286161 |
Ejemplares similares
-
Nuclei segmentation of HE stained histopathological images based on feature global delivery connection network
por: Shi, Peng, et al.
Publicado: (2022) -
Semi-Supervised Instance-Segmentation Model for Feature Transfer Based on Category Attention
por: Wang, Hao, et al.
Publicado: (2022) -
Face Manipulation Detection Based on Supervised Multi-Feature Fusion Attention Network
por: Cao, Lin, et al.
Publicado: (2021) -
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018) -
An improved contrastive learning network for semi-supervised multi-structure segmentation in echocardiography
por: Guo, Ziyu, et al.
Publicado: (2023)