Cargando…

CYRI proteins: controllers of actin dynamics in the cellular ‘eat vs walk’ decision

Cells use actin-based protrusions not only to migrate, but also to sample their environment and take up liquids and particles, including nutrients, antigens and pathogens. Lamellipodia are sheet-like actin-based protrusions involved in sensing the substratum and directing cell migration. Related str...

Descripción completa

Detalles Bibliográficos
Autor principal: Machesky, Laura M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212538/
https://www.ncbi.nlm.nih.gov/pubmed/36892409
http://dx.doi.org/10.1042/BST20221354
Descripción
Sumario:Cells use actin-based protrusions not only to migrate, but also to sample their environment and take up liquids and particles, including nutrients, antigens and pathogens. Lamellipodia are sheet-like actin-based protrusions involved in sensing the substratum and directing cell migration. Related structures, macropinocytic cups, arise from lamellipodia ruffles and can take in large gulps of the surrounding medium. How cells regulate the balance between using lamellipodia for migration and macropinocytosis is not yet well understood. We recently identified CYRI proteins as RAC1-binding regulators of the dynamics of lamellipodia and macropinocytic events. This review discusses recent advances in our understanding of how cells regulate the balance between eating and walking by repurposing their actin cytoskeletons in response to environmental cues.