Cargando…

3D bioprinting microgels to construct implantable vascular tissue

Engineered implantable functional thick tissues require hierarchical vasculatures within cell‐laden hydrogel that can mechanically withstand the shear stress from perfusion and facilitate angiogenesis for nutrient transfer. Yet current extrusion‐based 3D printing strategies are unable to recapitulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xinhuan, Liu, Xin, Liu, Wenli, Liu, Yanyan, Li, Ailing, Qiu, Dong, Zheng, Xiongfei, Gu, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212694/
https://www.ncbi.nlm.nih.gov/pubmed/37199064
http://dx.doi.org/10.1111/cpr.13456
_version_ 1785047475743096832
author Wang, Xinhuan
Liu, Xin
Liu, Wenli
Liu, Yanyan
Li, Ailing
Qiu, Dong
Zheng, Xiongfei
Gu, Qi
author_facet Wang, Xinhuan
Liu, Xin
Liu, Wenli
Liu, Yanyan
Li, Ailing
Qiu, Dong
Zheng, Xiongfei
Gu, Qi
author_sort Wang, Xinhuan
collection PubMed
description Engineered implantable functional thick tissues require hierarchical vasculatures within cell‐laden hydrogel that can mechanically withstand the shear stress from perfusion and facilitate angiogenesis for nutrient transfer. Yet current extrusion‐based 3D printing strategies are unable to recapitulate hierarchical networks, highlighting the need for bioinks with tunable properties. Here, we introduce an approach whereby crosslinkable microgels enhance mechanical stability and induce spontaneous microvascular networks comprised of human umbilical cord vein endothelial cells (HUVECs) in a soft gelatin methacryoyl (GelMA)‐based bioink. Furthermore, we successfully implanted the 3D printed multi‐branched tissue, being connected from the rat carotid artery to the jugular vein direct surgical anastomosis. The work represents a significant step toward in the field of large vascularized tissue fabrication and may have implications for the treatment of organ failure in the future.
format Online
Article
Text
id pubmed-10212694
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-102126942023-05-27 3D bioprinting microgels to construct implantable vascular tissue Wang, Xinhuan Liu, Xin Liu, Wenli Liu, Yanyan Li, Ailing Qiu, Dong Zheng, Xiongfei Gu, Qi Cell Prolif Original Articles Engineered implantable functional thick tissues require hierarchical vasculatures within cell‐laden hydrogel that can mechanically withstand the shear stress from perfusion and facilitate angiogenesis for nutrient transfer. Yet current extrusion‐based 3D printing strategies are unable to recapitulate hierarchical networks, highlighting the need for bioinks with tunable properties. Here, we introduce an approach whereby crosslinkable microgels enhance mechanical stability and induce spontaneous microvascular networks comprised of human umbilical cord vein endothelial cells (HUVECs) in a soft gelatin methacryoyl (GelMA)‐based bioink. Furthermore, we successfully implanted the 3D printed multi‐branched tissue, being connected from the rat carotid artery to the jugular vein direct surgical anastomosis. The work represents a significant step toward in the field of large vascularized tissue fabrication and may have implications for the treatment of organ failure in the future. John Wiley and Sons Inc. 2023-05-17 /pmc/articles/PMC10212694/ /pubmed/37199064 http://dx.doi.org/10.1111/cpr.13456 Text en © 2023 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Wang, Xinhuan
Liu, Xin
Liu, Wenli
Liu, Yanyan
Li, Ailing
Qiu, Dong
Zheng, Xiongfei
Gu, Qi
3D bioprinting microgels to construct implantable vascular tissue
title 3D bioprinting microgels to construct implantable vascular tissue
title_full 3D bioprinting microgels to construct implantable vascular tissue
title_fullStr 3D bioprinting microgels to construct implantable vascular tissue
title_full_unstemmed 3D bioprinting microgels to construct implantable vascular tissue
title_short 3D bioprinting microgels to construct implantable vascular tissue
title_sort 3d bioprinting microgels to construct implantable vascular tissue
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212694/
https://www.ncbi.nlm.nih.gov/pubmed/37199064
http://dx.doi.org/10.1111/cpr.13456
work_keys_str_mv AT wangxinhuan 3dbioprintingmicrogelstoconstructimplantablevasculartissue
AT liuxin 3dbioprintingmicrogelstoconstructimplantablevasculartissue
AT liuwenli 3dbioprintingmicrogelstoconstructimplantablevasculartissue
AT liuyanyan 3dbioprintingmicrogelstoconstructimplantablevasculartissue
AT liailing 3dbioprintingmicrogelstoconstructimplantablevasculartissue
AT qiudong 3dbioprintingmicrogelstoconstructimplantablevasculartissue
AT zhengxiongfei 3dbioprintingmicrogelstoconstructimplantablevasculartissue
AT guqi 3dbioprintingmicrogelstoconstructimplantablevasculartissue