Cargando…

GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity

The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in gl...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, Dionysios C., Bayik, Defne, Storevik, Simon, Moreino, Shannon Sherwin, Sprowls, Samuel A., Han, Jianhua, Augustsson, Mina Thue, Lauko, Adam, Sravya, Palavalasa, Røsland, Gro Vatne, Troike, Katie, Tronstad, Karl Johan, Wang, Sabrina, Sarnow, Katharina, Kay, Kristen, Lunavat, Taral R., Silver, Daniel J., Dayal, Sahil, Joseph, Justin Vareecal, Mulkearns-Hubert, Erin, Ystaas, Lars Andreas Rømo, Deshpande, Gauravi, Guyon, Joris, Zhou, Yadi, Magaut, Capucine R., Seder, Juliana, Neises, Laura, Williford, Sarah E., Meiser, Johannes, Scott, Andrew J., Sajjakulnukit, Peter, Mears, Jason A., Bjerkvig, Rolf, Chakraborty, Abhishek, Daubon, Thomas, Cheng, Feixiong, Lyssiotis, Costas A., Wahl, Daniel R., Hjelmeland, Anita B., Hossain, Jubayer A., Miletic, Hrvoje, Lathia, Justin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212766/
https://www.ncbi.nlm.nih.gov/pubmed/37169842
http://dx.doi.org/10.1038/s43018-023-00556-5
_version_ 1785047493301501952
author Watson, Dionysios C.
Bayik, Defne
Storevik, Simon
Moreino, Shannon Sherwin
Sprowls, Samuel A.
Han, Jianhua
Augustsson, Mina Thue
Lauko, Adam
Sravya, Palavalasa
Røsland, Gro Vatne
Troike, Katie
Tronstad, Karl Johan
Wang, Sabrina
Sarnow, Katharina
Kay, Kristen
Lunavat, Taral R.
Silver, Daniel J.
Dayal, Sahil
Joseph, Justin Vareecal
Mulkearns-Hubert, Erin
Ystaas, Lars Andreas Rømo
Deshpande, Gauravi
Guyon, Joris
Zhou, Yadi
Magaut, Capucine R.
Seder, Juliana
Neises, Laura
Williford, Sarah E.
Meiser, Johannes
Scott, Andrew J.
Sajjakulnukit, Peter
Mears, Jason A.
Bjerkvig, Rolf
Chakraborty, Abhishek
Daubon, Thomas
Cheng, Feixiong
Lyssiotis, Costas A.
Wahl, Daniel R.
Hjelmeland, Anita B.
Hossain, Jubayer A.
Miletic, Hrvoje
Lathia, Justin D.
author_facet Watson, Dionysios C.
Bayik, Defne
Storevik, Simon
Moreino, Shannon Sherwin
Sprowls, Samuel A.
Han, Jianhua
Augustsson, Mina Thue
Lauko, Adam
Sravya, Palavalasa
Røsland, Gro Vatne
Troike, Katie
Tronstad, Karl Johan
Wang, Sabrina
Sarnow, Katharina
Kay, Kristen
Lunavat, Taral R.
Silver, Daniel J.
Dayal, Sahil
Joseph, Justin Vareecal
Mulkearns-Hubert, Erin
Ystaas, Lars Andreas Rømo
Deshpande, Gauravi
Guyon, Joris
Zhou, Yadi
Magaut, Capucine R.
Seder, Juliana
Neises, Laura
Williford, Sarah E.
Meiser, Johannes
Scott, Andrew J.
Sajjakulnukit, Peter
Mears, Jason A.
Bjerkvig, Rolf
Chakraborty, Abhishek
Daubon, Thomas
Cheng, Feixiong
Lyssiotis, Costas A.
Wahl, Daniel R.
Hjelmeland, Anita B.
Hossain, Jubayer A.
Miletic, Hrvoje
Lathia, Justin D.
author_sort Watson, Dionysios C.
collection PubMed
description The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host–tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.
format Online
Article
Text
id pubmed-10212766
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-102127662023-05-27 GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity Watson, Dionysios C. Bayik, Defne Storevik, Simon Moreino, Shannon Sherwin Sprowls, Samuel A. Han, Jianhua Augustsson, Mina Thue Lauko, Adam Sravya, Palavalasa Røsland, Gro Vatne Troike, Katie Tronstad, Karl Johan Wang, Sabrina Sarnow, Katharina Kay, Kristen Lunavat, Taral R. Silver, Daniel J. Dayal, Sahil Joseph, Justin Vareecal Mulkearns-Hubert, Erin Ystaas, Lars Andreas Rømo Deshpande, Gauravi Guyon, Joris Zhou, Yadi Magaut, Capucine R. Seder, Juliana Neises, Laura Williford, Sarah E. Meiser, Johannes Scott, Andrew J. Sajjakulnukit, Peter Mears, Jason A. Bjerkvig, Rolf Chakraborty, Abhishek Daubon, Thomas Cheng, Feixiong Lyssiotis, Costas A. Wahl, Daniel R. Hjelmeland, Anita B. Hossain, Jubayer A. Miletic, Hrvoje Lathia, Justin D. Nat Cancer Article The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host–tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development. Nature Publishing Group US 2023-05-11 2023 /pmc/articles/PMC10212766/ /pubmed/37169842 http://dx.doi.org/10.1038/s43018-023-00556-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Watson, Dionysios C.
Bayik, Defne
Storevik, Simon
Moreino, Shannon Sherwin
Sprowls, Samuel A.
Han, Jianhua
Augustsson, Mina Thue
Lauko, Adam
Sravya, Palavalasa
Røsland, Gro Vatne
Troike, Katie
Tronstad, Karl Johan
Wang, Sabrina
Sarnow, Katharina
Kay, Kristen
Lunavat, Taral R.
Silver, Daniel J.
Dayal, Sahil
Joseph, Justin Vareecal
Mulkearns-Hubert, Erin
Ystaas, Lars Andreas Rømo
Deshpande, Gauravi
Guyon, Joris
Zhou, Yadi
Magaut, Capucine R.
Seder, Juliana
Neises, Laura
Williford, Sarah E.
Meiser, Johannes
Scott, Andrew J.
Sajjakulnukit, Peter
Mears, Jason A.
Bjerkvig, Rolf
Chakraborty, Abhishek
Daubon, Thomas
Cheng, Feixiong
Lyssiotis, Costas A.
Wahl, Daniel R.
Hjelmeland, Anita B.
Hossain, Jubayer A.
Miletic, Hrvoje
Lathia, Justin D.
GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity
title GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity
title_full GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity
title_fullStr GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity
title_full_unstemmed GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity
title_short GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity
title_sort gap43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212766/
https://www.ncbi.nlm.nih.gov/pubmed/37169842
http://dx.doi.org/10.1038/s43018-023-00556-5
work_keys_str_mv AT watsondionysiosc gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT bayikdefne gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT storeviksimon gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT moreinoshannonsherwin gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT sprowlssamuela gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT hanjianhua gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT augustssonminathue gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT laukoadam gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT sravyapalavalasa gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT røslandgrovatne gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT troikekatie gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT tronstadkarljohan gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT wangsabrina gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT sarnowkatharina gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT kaykristen gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT lunavattaralr gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT silverdanielj gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT dayalsahil gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT josephjustinvareecal gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT mulkearnshuberterin gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT ystaaslarsandreasrømo gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT deshpandegauravi gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT guyonjoris gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT zhouyadi gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT magautcapuciner gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT sederjuliana gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT neiseslaura gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT willifordsarahe gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT meiserjohannes gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT scottandrewj gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT sajjakulnukitpeter gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT mearsjasona gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT bjerkvigrolf gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT chakrabortyabhishek gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT daubonthomas gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT chengfeixiong gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT lyssiotiscostasa gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT wahldanielr gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT hjelmelandanitab gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT hossainjubayera gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT miletichrvoje gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity
AT lathiajustind gap43dependentmitochondriatransferfromastrocytesenhancesglioblastomatumorigenicity