Cargando…
Using machine learning to predict processes and morphometric features of watershed
The research aims to classify alluvial fans’ morphometric properties using the SOM algorithm. It also determines the relationship between morphometric characteristics and erosion rate and lithology using the GMDH algorithm. For this purpose, alluvial fans of 4 watersheds in Iran are extracted semi-a...
Autores principales: | Mokarram, Marzieh, Pourghasemi, Hamid Reza, Tiefenbacher, John P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212989/ https://www.ncbi.nlm.nih.gov/pubmed/37231078 http://dx.doi.org/10.1038/s41598-023-35634-2 |
Ejemplares similares
-
Author Correction: Using machine learning to predict processes and morphometric features of watershed
por: Mokarram, Marzieh, et al.
Publicado: (2023) -
A machine learning framework for multi-hazards modeling and mapping in a mountainous area
por: Yousefi, Saleh, et al.
Publicado: (2020) -
The COVID-19 crisis and its consequences for global warming and climate change
por: Kaviani Rad, Abdullah, et al.
Publicado: (2022) -
Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models
por: Jaafarzadeh, Maryam Sadat, et al.
Publicado: (2021) -
Multi-hazard spatial modeling via ensembles of machine learning and meta-heuristic techniques
por: Bordbar, Mojgan, et al.
Publicado: (2022)