Cargando…
Machine learning-enabled exploration of the electrochemical stability of real-scale metallic nanoparticles
Surface Pourbaix diagrams are critical to understanding the stability of nanomaterials in electrochemical environments. Their construction based on density functional theory is, however, prohibitively expensive for real-scale systems, such as several nanometer-size nanoparticles (NPs). Herein, with...
Autores principales: | Bang, Kihoon, Hong, Doosun, Park, Youngtae, Kim, Donghun, Han, Sang Soo, Lee, Hyuck Mo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213026/ https://www.ncbi.nlm.nih.gov/pubmed/37230963 http://dx.doi.org/10.1038/s41467-023-38758-1 |
Ejemplares similares
-
Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning
por: Bang, Kihoon, et al.
Publicado: (2021) -
Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts
por: Lee, Gyu Rac, et al.
Publicado: (2023) -
Comparative analysis of environmental standards to install a rooftop temperature monitoring station
por: Kim, Byeongtaek, et al.
Publicado: (2022) -
CuBTC Metal–Organic
Framework Decorated with
FeBTC Nanoparticles with Enhance Water Stability for Environmental
Remediation Applications
por: Kim, Donghun, et al.
Publicado: (2023) -
A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes
por: Li, Feng, et al.
Publicado: (2019)