Cargando…
Stochastic gradient descent for optimization for nuclear systems
The use of gradient descent methods for optimizing k-eigenvalue nuclear systems has been shown to be useful in the past, but the use of k-eigenvalue gradients have proved computationally challenging due to their stochastic nature. ADAM is a gradient descent method that accounts for gradients with a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213052/ https://www.ncbi.nlm.nih.gov/pubmed/37230990 http://dx.doi.org/10.1038/s41598-023-32112-7 |
Sumario: | The use of gradient descent methods for optimizing k-eigenvalue nuclear systems has been shown to be useful in the past, but the use of k-eigenvalue gradients have proved computationally challenging due to their stochastic nature. ADAM is a gradient descent method that accounts for gradients with a stochastic nature. This analysis uses challenge problems constructed to verify if ADAM is a suitable tool to optimize k-eigenvalue nuclear systems. ADAM is able to successfully optimize nuclear systems using the gradients of k-eigenvalue problems despite their stochastic nature and uncertainty. Furthermore, it is clearly demonstrated that low-compute time, high-variance estimates of the gradient lead to better performance in the optimization challenge problems tested here. |
---|