Cargando…
Stochastic gradient descent for optimization for nuclear systems
The use of gradient descent methods for optimizing k-eigenvalue nuclear systems has been shown to be useful in the past, but the use of k-eigenvalue gradients have proved computationally challenging due to their stochastic nature. ADAM is a gradient descent method that accounts for gradients with a...
Autores principales: | Williams, Austin, Walton, Noah, Maryanski, Austin, Bogetic, Sandra, Hines, Wes, Sobes, Vladimir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213052/ https://www.ncbi.nlm.nih.gov/pubmed/37230990 http://dx.doi.org/10.1038/s41598-023-32112-7 |
Ejemplares similares
-
Using the Stochastic Gradient Descent Optimization Algorithm on Estimating of Reactivity Ratios
por: Fazakas-Anca, Iosif Sorin, et al.
Publicado: (2021) -
Optimization by Adaptive Stochastic Descent
por: Kerr, Cliff C., et al.
Publicado: (2018) -
Implicit Stochastic Gradient Descent Method for Cross-Domain Recommendation System
por: Vo, Nam D., et al.
Publicado: (2020) -
Pangenome graph layout by Path-Guided Stochastic Gradient Descent
por: Heumos, Simon, et al.
Publicado: (2023) -
Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent
por: Wang, Yuanfeng, et al.
Publicado: (2010)