Cargando…
Effects of energy drinks on myogenic differentiation of murine C2C12 myoblasts
Energy drinks, often advertised as dietary supplements that enhance physical and mental performance, have gained increasing popularity among adolescents and athletes. Several studies on individual ingredients such as caffeine or taurine have reported either adverse or favorable influences on myogeni...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213057/ https://www.ncbi.nlm.nih.gov/pubmed/37231025 http://dx.doi.org/10.1038/s41598-023-35338-7 |
Sumario: | Energy drinks, often advertised as dietary supplements that enhance physical and mental performance, have gained increasing popularity among adolescents and athletes. Several studies on individual ingredients such as caffeine or taurine have reported either adverse or favorable influences on myogenic differentiation, a key process in muscle regeneration to repair microtears after an intense workout session. However, the impact of different energy drinks with various formulas on muscle differentiation has never been reported. This study aims to examine the in vitro effects of various energy drink brands on myogenic differentiation. Murine C2C12 myoblast cells were induced to differentiate into myotubes in the presence of one of eight energy drinks at varying dilutions. A dose-dependent inhibition of myotube formation was observed for all energy drinks, supported by reduced percentage of MHC-positive nuclei and fusion index. Moreover, expression of myogenic regulatory factor MyoG and differentiation marker MCK were also decreased. Furthermore, given the variation in formulas of different energy drinks, there were remarkable differences in the differentiation and fusion of myotubes between energy drinks. This is the first study to investigate the impact of various energy drinks on myogenic differentiation and our results suggest an inhibitory effect of energy drinks in muscle regeneration. |
---|