Cargando…
Development and validation of deep learning-based automatic brain segmentation for East Asians: A comparison with Freesurfer
PURPOSE: To develop and validate deep learning-based automatic brain segmentation for East Asians with comparison to data for healthy controls from Freesurfer based on a ground truth. METHODS: A total of 30 healthy participants were enrolled and underwent T1-weighted magnetic resonance imaging (MRI)...
Autores principales: | Moon, Chung-Man, Lee, Yun Young, Hyeong, Ki-Eun, Yoon, Woong, Baek, Byung Hyun, Heo, Suk-Hee, Shin, Sang-Soo, Kim, Seul Kee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213324/ https://www.ncbi.nlm.nih.gov/pubmed/37250408 http://dx.doi.org/10.3389/fnins.2023.1157738 |
Ejemplares similares
-
freesurfer: Connecting the Freesurfer software with R
por: Muschelli, John, et al.
Publicado: (2018) -
Development and validation of a deep learning-based automatic segmentation model for assessing intracranial volume: comparison with NeuroQuant, FreeSurfer, and SynthSeg
por: Suh, Pae Sun, et al.
Publicado: (2023) -
On brain atlas choice and automatic segmentation methods: a comparison of MAPER & FreeSurfer using three atlas databases
por: Yaakub, Siti Nurbaya, et al.
Publicado: (2020) -
A Critical Appraisal of the Hippocampal Subfield Segmentation Package in FreeSurfer
por: Wisse, Laura E. M., et al.
Publicado: (2014) -
Comparison of accuracy between FSL’s FIRST and Freesurfer for caudate nucleus and putamen segmentation
por: Perlaki, Gabor, et al.
Publicado: (2017)