Cargando…
The relationship between protein modified folding molecular network and Alzheimer’s disease pathogenesis based on BAG2-HSC70-STUB1-MAPT expression patterns analysis
BACKGROUND: Alzheimer’s disease (AD) is the most common cause of dementia and cognitive decline, while its pathological mechanism remains unclear. Tauopathies is one of the most widely accepted hypotheses. In this study, the molecular network was established and the expression pattern of the core ge...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213342/ https://www.ncbi.nlm.nih.gov/pubmed/37251806 http://dx.doi.org/10.3389/fnagi.2023.1090400 |
_version_ | 1785047600044441600 |
---|---|
author | Yang, Xiaolong Guo, Wenbo Yang, Lin Li, Xuehui Zhang, Zhengkun Pang, Xinping Liu, Ji Pang, Chaoyang |
author_facet | Yang, Xiaolong Guo, Wenbo Yang, Lin Li, Xuehui Zhang, Zhengkun Pang, Xinping Liu, Ji Pang, Chaoyang |
author_sort | Yang, Xiaolong |
collection | PubMed |
description | BACKGROUND: Alzheimer’s disease (AD) is the most common cause of dementia and cognitive decline, while its pathological mechanism remains unclear. Tauopathies is one of the most widely accepted hypotheses. In this study, the molecular network was established and the expression pattern of the core gene was analyzed, confirming that the dysfunction of protein folding and degradation is one of the critical factors for AD. METHODS: This study analyzed 9 normal people and 22 AD patients’ microarray data obtained from GSE1297 in Gene Expression Omnibus (GEO) database. The matrix decomposition analysis was used to identify the correlation between the molecular network and AD. The mathematics of the relationship between the Mini-Mental State Examination (MMSE) and the expression level of the genes involved in the molecular network was found by Neural Network (NN). Furthermore, the Support Vector Machine (SVM) model was for classification according to the expression value of genes. RESULTS: The difference of eigenvalues is small in first three stages and increases dramatically in the severe stage. For example, the maximum eigenvalue changed to 0.79 in the severe group from 0.56 in the normal group. The sign of the elements in the eigenvectors of biggest eigenvalue reversed. The linear function of the relationship between clinical MMSE and gene expression values was observed. Then, the model of Neural Network (NN) is designed to predict the value of MMSE based on the linear function, and the predicted accuracy is up to 0.93. For the SVM classification, the accuracy of the model is 0.72. CONCLUSION: This study shows that the molecular network of protein folding and degradation represented by “BAG2-HSC70-STUB1-MAPT” has a strong relationship with the occurrence and progression of AD, and this degree of correlation of the four genes gradually weakens with the progression of AD. The mathematical mapping of the relationship between gene expression and clinical MMSE was found, and it can be used in predicting MMSE or classification with high accuracy. These genes are expected to be potential biomarkers for early diagnosis and treatment of AD. |
format | Online Article Text |
id | pubmed-10213342 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102133422023-05-27 The relationship between protein modified folding molecular network and Alzheimer’s disease pathogenesis based on BAG2-HSC70-STUB1-MAPT expression patterns analysis Yang, Xiaolong Guo, Wenbo Yang, Lin Li, Xuehui Zhang, Zhengkun Pang, Xinping Liu, Ji Pang, Chaoyang Front Aging Neurosci Aging Neuroscience BACKGROUND: Alzheimer’s disease (AD) is the most common cause of dementia and cognitive decline, while its pathological mechanism remains unclear. Tauopathies is one of the most widely accepted hypotheses. In this study, the molecular network was established and the expression pattern of the core gene was analyzed, confirming that the dysfunction of protein folding and degradation is one of the critical factors for AD. METHODS: This study analyzed 9 normal people and 22 AD patients’ microarray data obtained from GSE1297 in Gene Expression Omnibus (GEO) database. The matrix decomposition analysis was used to identify the correlation between the molecular network and AD. The mathematics of the relationship between the Mini-Mental State Examination (MMSE) and the expression level of the genes involved in the molecular network was found by Neural Network (NN). Furthermore, the Support Vector Machine (SVM) model was for classification according to the expression value of genes. RESULTS: The difference of eigenvalues is small in first three stages and increases dramatically in the severe stage. For example, the maximum eigenvalue changed to 0.79 in the severe group from 0.56 in the normal group. The sign of the elements in the eigenvectors of biggest eigenvalue reversed. The linear function of the relationship between clinical MMSE and gene expression values was observed. Then, the model of Neural Network (NN) is designed to predict the value of MMSE based on the linear function, and the predicted accuracy is up to 0.93. For the SVM classification, the accuracy of the model is 0.72. CONCLUSION: This study shows that the molecular network of protein folding and degradation represented by “BAG2-HSC70-STUB1-MAPT” has a strong relationship with the occurrence and progression of AD, and this degree of correlation of the four genes gradually weakens with the progression of AD. The mathematical mapping of the relationship between gene expression and clinical MMSE was found, and it can be used in predicting MMSE or classification with high accuracy. These genes are expected to be potential biomarkers for early diagnosis and treatment of AD. Frontiers Media S.A. 2023-05-12 /pmc/articles/PMC10213342/ /pubmed/37251806 http://dx.doi.org/10.3389/fnagi.2023.1090400 Text en Copyright © 2023 Yang, Guo, Yang, Li, Zhang, Pang, Liu and Pang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Aging Neuroscience Yang, Xiaolong Guo, Wenbo Yang, Lin Li, Xuehui Zhang, Zhengkun Pang, Xinping Liu, Ji Pang, Chaoyang The relationship between protein modified folding molecular network and Alzheimer’s disease pathogenesis based on BAG2-HSC70-STUB1-MAPT expression patterns analysis |
title | The relationship between protein modified folding molecular network and Alzheimer’s disease pathogenesis based on BAG2-HSC70-STUB1-MAPT expression patterns analysis |
title_full | The relationship between protein modified folding molecular network and Alzheimer’s disease pathogenesis based on BAG2-HSC70-STUB1-MAPT expression patterns analysis |
title_fullStr | The relationship between protein modified folding molecular network and Alzheimer’s disease pathogenesis based on BAG2-HSC70-STUB1-MAPT expression patterns analysis |
title_full_unstemmed | The relationship between protein modified folding molecular network and Alzheimer’s disease pathogenesis based on BAG2-HSC70-STUB1-MAPT expression patterns analysis |
title_short | The relationship between protein modified folding molecular network and Alzheimer’s disease pathogenesis based on BAG2-HSC70-STUB1-MAPT expression patterns analysis |
title_sort | relationship between protein modified folding molecular network and alzheimer’s disease pathogenesis based on bag2-hsc70-stub1-mapt expression patterns analysis |
topic | Aging Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213342/ https://www.ncbi.nlm.nih.gov/pubmed/37251806 http://dx.doi.org/10.3389/fnagi.2023.1090400 |
work_keys_str_mv | AT yangxiaolong therelationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT guowenbo therelationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT yanglin therelationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT lixuehui therelationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT zhangzhengkun therelationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT pangxinping therelationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT liuji therelationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT pangchaoyang therelationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT yangxiaolong relationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT guowenbo relationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT yanglin relationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT lixuehui relationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT zhangzhengkun relationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT pangxinping relationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT liuji relationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis AT pangchaoyang relationshipbetweenproteinmodifiedfoldingmolecularnetworkandalzheimersdiseasepathogenesisbasedonbag2hsc70stub1maptexpressionpatternsanalysis |