Cargando…
A ubiquitination-mediated degradation system to target 14-3-3-binding phosphoproteins
The phosphorylation of 14-3-3 binding motif is involved in many cellular processes. A strategy that enables targeted degradation of 14-3-3-binding phosphoproteins (14-3-3-BPPs) for studying their functions is highly desirable for basic research. Here, we report a phosphorylation-induced, ubiquitin-p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213371/ https://www.ncbi.nlm.nih.gov/pubmed/37251884 http://dx.doi.org/10.1016/j.heliyon.2023.e16318 |
Sumario: | The phosphorylation of 14-3-3 binding motif is involved in many cellular processes. A strategy that enables targeted degradation of 14-3-3-binding phosphoproteins (14-3-3-BPPs) for studying their functions is highly desirable for basic research. Here, we report a phosphorylation-induced, ubiquitin-proteasome-system-mediated targeted protein degradation (TPD) strategy that allows specific degradation of 14-3-3-BPPs. Specifically, by ligating a modified von Hippel-Lindau E3-ligase with an engineered 14-3-3 bait, we generated a protein chimera referred to as Targeted Degradation of 14-3-3-binding PhosphoProtein (TDPP). TDPP can serve as a universal degrader for 14-3-3-BPPs based on the specific recognition of the phosphorylation in 14-3-3 binding motifs. TDPP shows high efficiency and specificity to a difopein-EGFP reporter, general and specific 14-3-3-BPPs. TDPP can also be applied for the validation of 14-3-3-BPPs. These results strongly support TDPP as a powerful tool for 14-3-3 related research. |
---|