Cargando…

Analysis of circadian rhythm components in EEG/EMG data of aged mice

Aging disrupts circadian clocks, as evidenced by a reduction in the amplitude of circadian rhythms. Because the circadian clock strongly influences sleep–wake behavior in mammals, age-related alterations in sleep–wake patterns may be attributable, at least partly, to functional changes in the circad...

Descripción completa

Detalles Bibliográficos
Autores principales: Masuda, Kosaku, Katsuda, Yoko, Niwa, Yasutaka, Sakurai, Takeshi, Hirano, Arisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213445/
https://www.ncbi.nlm.nih.gov/pubmed/37250413
http://dx.doi.org/10.3389/fnins.2023.1173537
_version_ 1785047625303588864
author Masuda, Kosaku
Katsuda, Yoko
Niwa, Yasutaka
Sakurai, Takeshi
Hirano, Arisa
author_facet Masuda, Kosaku
Katsuda, Yoko
Niwa, Yasutaka
Sakurai, Takeshi
Hirano, Arisa
author_sort Masuda, Kosaku
collection PubMed
description Aging disrupts circadian clocks, as evidenced by a reduction in the amplitude of circadian rhythms. Because the circadian clock strongly influences sleep–wake behavior in mammals, age-related alterations in sleep–wake patterns may be attributable, at least partly, to functional changes in the circadian clock. However, the effect of aging on the circadian characteristics of sleep architecture has not been well assessed, as circadian behaviors are usually evaluated through long-term behavioral recording with wheel-running or infrared sensors. In this study, we examined age-related changes in circadian sleep–wake behavior using circadian components extracted from electroencephalography (EEG) and electromyography (EMG) data. EEG and EMG were recorded from 12 to 17-week-old and 78 to 83-week-old mice for 3 days under light/dark and constant dark conditions. We analyzed time-dependent changes in the duration of sleep. Rapid eye movement (REM) and non-REM (NREM) sleep significantly increased during the night phase in old mice, whereas no significant change was observed during the light phase. The circadian components were then extracted from the EEG data for each sleep–wake stage, revealing that the circadian rhythm in the power of delta waves during NREM sleep was attenuated and delayed in old mice. Furthermore, we used machine learning to evaluate the phase of the circadian rhythm, with EEG data serving as the input and the phase of the sleep–wake rhythm (environmental time) as the output. The results indicated that the output time for the old mice data tended to be delayed, specifically at night. These results indicate that the aging process significantly impacts the circadian rhythm in the EEG power spectrum despite the circadian rhythm in the amounts of sleep and wake attenuated but still remaining in old mice. Moreover, EEG/EMG analysis is useful not only for evaluating sleep–wake stages but also for circadian rhythms in the brain.
format Online
Article
Text
id pubmed-10213445
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-102134452023-05-27 Analysis of circadian rhythm components in EEG/EMG data of aged mice Masuda, Kosaku Katsuda, Yoko Niwa, Yasutaka Sakurai, Takeshi Hirano, Arisa Front Neurosci Neuroscience Aging disrupts circadian clocks, as evidenced by a reduction in the amplitude of circadian rhythms. Because the circadian clock strongly influences sleep–wake behavior in mammals, age-related alterations in sleep–wake patterns may be attributable, at least partly, to functional changes in the circadian clock. However, the effect of aging on the circadian characteristics of sleep architecture has not been well assessed, as circadian behaviors are usually evaluated through long-term behavioral recording with wheel-running or infrared sensors. In this study, we examined age-related changes in circadian sleep–wake behavior using circadian components extracted from electroencephalography (EEG) and electromyography (EMG) data. EEG and EMG were recorded from 12 to 17-week-old and 78 to 83-week-old mice for 3 days under light/dark and constant dark conditions. We analyzed time-dependent changes in the duration of sleep. Rapid eye movement (REM) and non-REM (NREM) sleep significantly increased during the night phase in old mice, whereas no significant change was observed during the light phase. The circadian components were then extracted from the EEG data for each sleep–wake stage, revealing that the circadian rhythm in the power of delta waves during NREM sleep was attenuated and delayed in old mice. Furthermore, we used machine learning to evaluate the phase of the circadian rhythm, with EEG data serving as the input and the phase of the sleep–wake rhythm (environmental time) as the output. The results indicated that the output time for the old mice data tended to be delayed, specifically at night. These results indicate that the aging process significantly impacts the circadian rhythm in the EEG power spectrum despite the circadian rhythm in the amounts of sleep and wake attenuated but still remaining in old mice. Moreover, EEG/EMG analysis is useful not only for evaluating sleep–wake stages but also for circadian rhythms in the brain. Frontiers Media S.A. 2023-05-12 /pmc/articles/PMC10213445/ /pubmed/37250413 http://dx.doi.org/10.3389/fnins.2023.1173537 Text en Copyright © 2023 Masuda, Katsuda, Niwa, Sakurai and Hirano. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Masuda, Kosaku
Katsuda, Yoko
Niwa, Yasutaka
Sakurai, Takeshi
Hirano, Arisa
Analysis of circadian rhythm components in EEG/EMG data of aged mice
title Analysis of circadian rhythm components in EEG/EMG data of aged mice
title_full Analysis of circadian rhythm components in EEG/EMG data of aged mice
title_fullStr Analysis of circadian rhythm components in EEG/EMG data of aged mice
title_full_unstemmed Analysis of circadian rhythm components in EEG/EMG data of aged mice
title_short Analysis of circadian rhythm components in EEG/EMG data of aged mice
title_sort analysis of circadian rhythm components in eeg/emg data of aged mice
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213445/
https://www.ncbi.nlm.nih.gov/pubmed/37250413
http://dx.doi.org/10.3389/fnins.2023.1173537
work_keys_str_mv AT masudakosaku analysisofcircadianrhythmcomponentsineegemgdataofagedmice
AT katsudayoko analysisofcircadianrhythmcomponentsineegemgdataofagedmice
AT niwayasutaka analysisofcircadianrhythmcomponentsineegemgdataofagedmice
AT sakuraitakeshi analysisofcircadianrhythmcomponentsineegemgdataofagedmice
AT hiranoarisa analysisofcircadianrhythmcomponentsineegemgdataofagedmice