Cargando…
Dispersal inference from population genetic variation using a convolutional neural network
The geographic nature of biological dispersal shapes patterns of genetic variation over landscapes, making it possible to infer properties of dispersal from genetic variation data. Here, we present an inference tool that uses geographically distributed genotype data in combination with a convolution...
Autores principales: | Smith, Chris C R, Tittes, Silas, Ralph, Peter L, Kern, Andrew D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213498/ https://www.ncbi.nlm.nih.gov/pubmed/37052957 http://dx.doi.org/10.1093/genetics/iyad068 |
Ejemplares similares
-
The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference
por: Flagel, Lex, et al.
Publicado: (2019) -
Inferring Continuous and Discrete Population Genetic Structure Across Space
por: Bradburd, Gideon S., et al.
Publicado: (2018) -
Space is the Place: Effects of Continuous Spatial Structure on Analysis of Population Genetic Data
por: Battey, C. J., et al.
Publicado: (2020) -
Predicting geographic location from genetic variation with deep neural networks
por: Battey, CJ, et al.
Publicado: (2020) -
disperseNN2: a neural network for estimating dispersal distance from georeferenced polymorphism data
por: Smith, Chris C. R., et al.
Publicado: (2023)