Cargando…

Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells

Introduction: Glycogen storage disease type III (GSDIII) is a rare genetic disease caused by mutations in the AGL gene encoding the glycogen debranching enzyme (GDE). The deficiency of this enzyme, involved in cytosolic glycogen degradation, leads to pathological glycogen accumulation in liver, skel...

Descripción completa

Detalles Bibliográficos
Autores principales: Rossiaud, Lucille, Fragner, Pascal, Barbon, Elena, Gardin, Antoine, Benabides, Manon, Pellier, Emilie, Cosette, Jérémie, El Kassar, Lina, Giraud-Triboult, Karine, Nissan, Xavier, Ronzitti, Giuseppe, Hoch, Lucile
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213880/
https://www.ncbi.nlm.nih.gov/pubmed/37250895
http://dx.doi.org/10.3389/fcell.2023.1163427
_version_ 1785047719355613184
author Rossiaud, Lucille
Fragner, Pascal
Barbon, Elena
Gardin, Antoine
Benabides, Manon
Pellier, Emilie
Cosette, Jérémie
El Kassar, Lina
Giraud-Triboult, Karine
Nissan, Xavier
Ronzitti, Giuseppe
Hoch, Lucile
author_facet Rossiaud, Lucille
Fragner, Pascal
Barbon, Elena
Gardin, Antoine
Benabides, Manon
Pellier, Emilie
Cosette, Jérémie
El Kassar, Lina
Giraud-Triboult, Karine
Nissan, Xavier
Ronzitti, Giuseppe
Hoch, Lucile
author_sort Rossiaud, Lucille
collection PubMed
description Introduction: Glycogen storage disease type III (GSDIII) is a rare genetic disease caused by mutations in the AGL gene encoding the glycogen debranching enzyme (GDE). The deficiency of this enzyme, involved in cytosolic glycogen degradation, leads to pathological glycogen accumulation in liver, skeletal muscles and heart. Although the disease manifests with hypoglycemia and liver metabolism impairment, the progressive myopathy is the major disease burden in adult GSDIII patients, without any curative treatment currently available. Methods: Here, we combined the self-renewal and differentiation capabilities of human induced pluripotent stem cells (hiPSCs) with cutting edge CRISPR/Cas9 gene editing technology to establish a stable AGL knockout cell line and to explore glycogen metabolism in GSDIII. Results: Following skeletal muscle cells differentiation of the edited and control hiPSC lines, our study reports that the insertion of a frameshift mutation in AGL gene results in the loss of GDE expression and persistent glycogen accumulation under glucose starvation conditions. Phenotypically, we demonstrated that the edited skeletal muscle cells faithfully recapitulate the phenotype of differentiated skeletal muscle cells of hiPSCs derived from a GSDIII patient. We also demonstrated that treatment with recombinant AAV vectors expressing the human GDE cleared the accumulated glycogen. Discussion: This study describes the first skeletal muscle cell model of GSDIII derived from hiPSCs and establishes a platform to study the mechanisms that contribute to muscle impairments in GSDIII and to assess the therapeutic potential of pharmacological inducers of glycogen degradation or gene therapy approaches.
format Online
Article
Text
id pubmed-10213880
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-102138802023-05-27 Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells Rossiaud, Lucille Fragner, Pascal Barbon, Elena Gardin, Antoine Benabides, Manon Pellier, Emilie Cosette, Jérémie El Kassar, Lina Giraud-Triboult, Karine Nissan, Xavier Ronzitti, Giuseppe Hoch, Lucile Front Cell Dev Biol Cell and Developmental Biology Introduction: Glycogen storage disease type III (GSDIII) is a rare genetic disease caused by mutations in the AGL gene encoding the glycogen debranching enzyme (GDE). The deficiency of this enzyme, involved in cytosolic glycogen degradation, leads to pathological glycogen accumulation in liver, skeletal muscles and heart. Although the disease manifests with hypoglycemia and liver metabolism impairment, the progressive myopathy is the major disease burden in adult GSDIII patients, without any curative treatment currently available. Methods: Here, we combined the self-renewal and differentiation capabilities of human induced pluripotent stem cells (hiPSCs) with cutting edge CRISPR/Cas9 gene editing technology to establish a stable AGL knockout cell line and to explore glycogen metabolism in GSDIII. Results: Following skeletal muscle cells differentiation of the edited and control hiPSC lines, our study reports that the insertion of a frameshift mutation in AGL gene results in the loss of GDE expression and persistent glycogen accumulation under glucose starvation conditions. Phenotypically, we demonstrated that the edited skeletal muscle cells faithfully recapitulate the phenotype of differentiated skeletal muscle cells of hiPSCs derived from a GSDIII patient. We also demonstrated that treatment with recombinant AAV vectors expressing the human GDE cleared the accumulated glycogen. Discussion: This study describes the first skeletal muscle cell model of GSDIII derived from hiPSCs and establishes a platform to study the mechanisms that contribute to muscle impairments in GSDIII and to assess the therapeutic potential of pharmacological inducers of glycogen degradation or gene therapy approaches. Frontiers Media S.A. 2023-05-11 /pmc/articles/PMC10213880/ /pubmed/37250895 http://dx.doi.org/10.3389/fcell.2023.1163427 Text en Copyright © 2023 Rossiaud, Fragner, Barbon, Gardin, Benabides, Pellier, Cosette, El Kassar, Giraud-Triboult, Nissan, Ronzitti and Hoch. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cell and Developmental Biology
Rossiaud, Lucille
Fragner, Pascal
Barbon, Elena
Gardin, Antoine
Benabides, Manon
Pellier, Emilie
Cosette, Jérémie
El Kassar, Lina
Giraud-Triboult, Karine
Nissan, Xavier
Ronzitti, Giuseppe
Hoch, Lucile
Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells
title Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells
title_full Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells
title_fullStr Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells
title_full_unstemmed Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells
title_short Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells
title_sort pathological modeling of glycogen storage disease type iii with crispr/cas9 edited human pluripotent stem cells
topic Cell and Developmental Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213880/
https://www.ncbi.nlm.nih.gov/pubmed/37250895
http://dx.doi.org/10.3389/fcell.2023.1163427
work_keys_str_mv AT rossiaudlucille pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT fragnerpascal pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT barbonelena pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT gardinantoine pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT benabidesmanon pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT pellieremilie pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT cosettejeremie pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT elkassarlina pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT giraudtriboultkarine pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT nissanxavier pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT ronzittigiuseppe pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells
AT hochlucile pathologicalmodelingofglycogenstoragediseasetypeiiiwithcrisprcas9editedhumanpluripotentstemcells