Cargando…
Predicting antimicrobial resistance of bacterial pathogens using time series analysis
Antimicrobial resistance (AMR) is arguably one of the major health and economic challenges in our society. A key aspect of tackling AMR is rapid and accurate detection of the emergence and spread of AMR in food animal production, which requires routine AMR surveillance. However, AMR detection can be...
Autores principales: | Kim, Jeonghoon, Rupasinghe, Ruwini, Halev, Avishai, Huang, Chao, Rezaei, Shahbaz, Clavijo, Maria J., Robbins, Rebecca C., Martínez-López, Beatriz, Liu, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213968/ https://www.ncbi.nlm.nih.gov/pubmed/37250043 http://dx.doi.org/10.3389/fmicb.2023.1160224 |
Ejemplares similares
-
Applications of Machine Learning for the Classification of Porcine Reproductive and Respiratory Syndrome Virus Sublineages Using Amino Acid Scores of ORF5 Gene
por: Kim, Jeonghoon, et al.
Publicado: (2021) -
Infection prediction in swine populations with machine learning
por: Halev, Avishai, et al.
Publicado: (2023) -
Application of Bayesian Regression for the Identification of a Catchment Area for Cancer Cases in Dogs and Cats
por: Díaz Cao, José Manuel, et al.
Publicado: (2022) -
Molecular Evolution of Porcine Reproductive and Respiratory Syndrome Virus Field Strains from Two Swine Production Systems in the Midwestern United States from 2001 to 2020
por: Rupasinghe, Ruwini, et al.
Publicado: (2022) -
A tool to enhance antimicrobial stewardship using similarity networks to identify antimicrobial resistance patterns across farms
por: Aguilar-Vega, Cecilia, et al.
Publicado: (2023)