Cargando…
Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa
Changes in the water regime are among the crucial factors controlling soil carbon dynamics. However, at the aggregate scale, the microbial mechanisms that regulate soil respiration under flooding and drying conditions are obscure. In this research, we investigated how the shift from flooding to dryi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214030/ https://www.ncbi.nlm.nih.gov/pubmed/37250047 http://dx.doi.org/10.3389/fmicb.2023.1167353 |
_version_ | 1785047750177456128 |
---|---|
author | Zhu, Kai Jia, Weitao Mei, Yu Wu, Shengjun Huang, Ping |
author_facet | Zhu, Kai Jia, Weitao Mei, Yu Wu, Shengjun Huang, Ping |
author_sort | Zhu, Kai |
collection | PubMed |
description | Changes in the water regime are among the crucial factors controlling soil carbon dynamics. However, at the aggregate scale, the microbial mechanisms that regulate soil respiration under flooding and drying conditions are obscure. In this research, we investigated how the shift from flooding to drying changes the microbial respiration of soil aggregates by affecting microbial community composition and their co-occurrence patterns. Soils collected from a riparian zone of the Three Gorges Reservoir, China, were subjected to a wet-and-dry incubation experiment. Our data illustrated that the shift from flooding to drying substantially enhanced soil respiration for all sizes of aggregate fractions. Moreover, soil respiration declined with aggregate size in both flooding and drying treatments. The keystone taxa in bacterial networks were found to be Acidobacteriales, Gemmatimonadales, Anaerolineales, and Cytophagales during the flooding treatment, and Rhizobiales, Gemmatimonadales, Sphingomonadales, and Solirubrobacterales during the drying treatment. For fungal networks, Hypocreales and Agaricalesin were the keystone taxa in the flooding and drying treatments, respectively. Furthermore, the shift from flooding to drying enhanced the microbial respiration of soil aggregates by changing keystone taxa. Notably, fungal community composition and network properties dominated the changes in the microbial respiration of soil aggregates during the shift from flooding to drying. Thus, our study highlighted that the shift from flooding to drying changes keystone taxa, hence increasing aggregate-scale soil respiration. |
format | Online Article Text |
id | pubmed-10214030 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102140302023-05-27 Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa Zhu, Kai Jia, Weitao Mei, Yu Wu, Shengjun Huang, Ping Front Microbiol Microbiology Changes in the water regime are among the crucial factors controlling soil carbon dynamics. However, at the aggregate scale, the microbial mechanisms that regulate soil respiration under flooding and drying conditions are obscure. In this research, we investigated how the shift from flooding to drying changes the microbial respiration of soil aggregates by affecting microbial community composition and their co-occurrence patterns. Soils collected from a riparian zone of the Three Gorges Reservoir, China, were subjected to a wet-and-dry incubation experiment. Our data illustrated that the shift from flooding to drying substantially enhanced soil respiration for all sizes of aggregate fractions. Moreover, soil respiration declined with aggregate size in both flooding and drying treatments. The keystone taxa in bacterial networks were found to be Acidobacteriales, Gemmatimonadales, Anaerolineales, and Cytophagales during the flooding treatment, and Rhizobiales, Gemmatimonadales, Sphingomonadales, and Solirubrobacterales during the drying treatment. For fungal networks, Hypocreales and Agaricalesin were the keystone taxa in the flooding and drying treatments, respectively. Furthermore, the shift from flooding to drying enhanced the microbial respiration of soil aggregates by changing keystone taxa. Notably, fungal community composition and network properties dominated the changes in the microbial respiration of soil aggregates during the shift from flooding to drying. Thus, our study highlighted that the shift from flooding to drying changes keystone taxa, hence increasing aggregate-scale soil respiration. Frontiers Media S.A. 2023-05-12 /pmc/articles/PMC10214030/ /pubmed/37250047 http://dx.doi.org/10.3389/fmicb.2023.1167353 Text en Copyright © 2023 Zhu, Jia, Mei, Wu and Huang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Zhu, Kai Jia, Weitao Mei, Yu Wu, Shengjun Huang, Ping Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa |
title | Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa |
title_full | Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa |
title_fullStr | Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa |
title_full_unstemmed | Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa |
title_short | Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa |
title_sort | shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214030/ https://www.ncbi.nlm.nih.gov/pubmed/37250047 http://dx.doi.org/10.3389/fmicb.2023.1167353 |
work_keys_str_mv | AT zhukai shiftfromfloodingtodryingenhancestherespirationofsoilaggregatesbychangingmicrobialcommunitycompositionandkeystonetaxa AT jiaweitao shiftfromfloodingtodryingenhancestherespirationofsoilaggregatesbychangingmicrobialcommunitycompositionandkeystonetaxa AT meiyu shiftfromfloodingtodryingenhancestherespirationofsoilaggregatesbychangingmicrobialcommunitycompositionandkeystonetaxa AT wushengjun shiftfromfloodingtodryingenhancestherespirationofsoilaggregatesbychangingmicrobialcommunitycompositionandkeystonetaxa AT huangping shiftfromfloodingtodryingenhancestherespirationofsoilaggregatesbychangingmicrobialcommunitycompositionandkeystonetaxa |