Cargando…
An empirical Bayes method for differential expression analysis of single cells with deep generative models
Detecting differentially expressed genes is important for characterizing subpopulations of cells. In scRNA-seq data, however, nuisance variation due to technical factors like sequencing depth and RNA capture efficiency obscures the underlying biological signal. Deep generative models have been exten...
Autores principales: | Boyeau, Pierre, Regier, Jeffrey, Gayoso, Adam, Jordan, Michael I., Lopez, Romain, Yosef, Nir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214125/ https://www.ncbi.nlm.nih.gov/pubmed/37192164 http://dx.doi.org/10.1073/pnas.2209124120 |
Ejemplares similares
-
Deep Generative Modeling for Single-cell Transcriptomics
por: Lopez, Romain, et al.
Publicado: (2018) -
Enhancing scientific discoveries in molecular biology with deep generative models
por: Lopez, Romain, et al.
Publicado: (2020) -
Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models
por: Xu, Chenling, et al.
Publicado: (2021) -
Joint probabilistic modeling of single-cell multi-omic data with totalVI
por: Gayoso, Adam, et al.
Publicado: (2021) -
PeakVI: A deep generative model for single-cell chromatin accessibility analysis
por: Ashuach, Tal, et al.
Publicado: (2022)